Skip to main content
Log in

Protein-sheathed SWNT as a versatile scaffold for nanoparticle assembly and superstructured nanowires

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

One dimensional (1D) nanostructures have many possible applications in electronic, optical, and sensing devices associated with their nanosized lateral dimensions. In this regard, a general and bottom-up strategy to synthesize 1D nanoparticle arrays and conductive nanowires with a facile structural/compositional control is highly desired. We herein report a protein-sheathed single walled carbon nanotube (SWNT) that satisfies the criteria for an ideal template to assemble micron-long gold nanoparticle (AuNP) linear arrays with high structural rigidity. The resulting AuNP array has minimized inter-particle gaps, which is especially useful to template the overgrowth of Ag, Pd, and Pd/Ag metals into continuous nanowires (Au@M, M=Ag, Pd, Ag/ Pd). Our method successfully overcomes the incompatibility between carbon and metal materials, and the resulting superstructured metal nanowires have a tunable diameter below 100 nm and a shape closely replicating a SWNT. The Ag nanowires are composed of coalesced Au@Ag coreshell nanoparticles, while the Pd and Pd/Ag nanowires are made of very fine Pd nanocrystallites around the AuNP cores. These unique structural features are pivotal to various applications including surface enhanced Raman scattering (SERS), electrocatalysis, and gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. (a) Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. Adv Mater, 2003, 15: 353–389

    Article  Google Scholar 

  2. Lai Z, Chen Y, Tan C, Zhang X, Zhang H. Chem, 2016, 1: 59–77

    Article  CAS  Google Scholar 

  3. Wang ZL. Nanowires and Nanobelts: Materials, Properties and Devices. Heidelberg: Springer, 2003

    Book  Google Scholar 

  4. Chen D, Liang J, Pei Q. Sci China Chem, 2016, 59: 659–671

    Article  CAS  Google Scholar 

  5. Lyu H, Ping X, Gao R, Xu L, Pan L. Chin J Chem Phys, 2017, 30: 603–608

    Article  CAS  Google Scholar 

  6. (a) Wei H, Ma J, Li B, An L, Kong J, Yu P, Xia D. NPG Asia Mater, 2016, 8: e255

    Article  CAS  Google Scholar 

  7. Weiss NO, Duan X. Proc Natl Acad Sci USA, 2013, 110: 15171–15172

    Article  PubMed  PubMed Central  Google Scholar 

  8. (a) Ashley MJ, O’Brien MN, Hedderick KR, Mason JA, Ross MB, Mirkin CA. J Am Chem Soc, 2016, 138: 10096–10099

    Article  CAS  PubMed  Google Scholar 

  9. Sun W, Boulais E, Hakobyan Y, Wang WL, Guan A, Bathe M, Yin P. Science, 2014, 346: 1258361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tsukamoto R, Muraoka M, Seki M, Tabata H, Yamashita I. Chem Mater, 2007, 19: 2389–2391

    Article  CAS  Google Scholar 

  11. (a) Correa-Duarte MA, Pérez-Juste J, Sánchez-Iglesias A, Giersig M, Liz-Marzán LM. Angew Chem Int Ed, 2005, 44: 4375–4378

    Article  CAS  Google Scholar 

  12. Deng Z, Tian Y, Lee SH, Ribbe AE, Mao C. Angew Chem Int Ed, 2005, 44: 3582–3585

    Article  CAS  Google Scholar 

  13. Miele E, Raj S, Baraissov Z, Král P, Mirsaidov U. Adv Mater, 2017, 29: 1702682

    Article  CAS  Google Scholar 

  14. Wang J, Du Y, Lie S, Huang C. Sci China Chem, 2016, 59: 1513–1518

    Article  CAS  Google Scholar 

  15. Duan ZQ, Gao XB, Li TP, Yao K, Xie XM. Chin Chem Lett, 2017, 28: 521–524

    Article  CAS  Google Scholar 

  16. (a) Deng Z, Mao C. Nano Lett, 2003, 3: 1545–1548

    Article  CAS  Google Scholar 

  17. Mohamed HDA, Watson SMD, Horrocks BR, Houlton A. J Mater Chem C, 2015, 3: 438–446

    Article  CAS  Google Scholar 

  18. He Z, Yang Y, Liu JW, Yu SH. Chem Soc Rev, 2017, 46: 2732–2753

    Article  CAS  PubMed  Google Scholar 

  19. (a) Bayrak T, Helmi S, Ye J, Kauert D, Kelling J, Schönherr T, Weichelt R, Erbe A, Seidel R. Nano Lett, 2018, 18: 2116–2123

    Article  CAS  PubMed  Google Scholar 

  20. Park SH, Barish R, Li H, Reif JH, Finkelstein G, Yan H, Labean TH. Nano Lett, 2005, 5: 693–696

    Article  CAS  PubMed  Google Scholar 

  21. Uprety B, Gates EP, Geng Y, Woolley AT, Harb JN. Langmuir, 2014, 30: 1134–1141

    Article  CAS  PubMed  Google Scholar 

  22. Tan SJ, Campolongo MJ, Luo D, Cheng W. Nat Nanotech, 2011, 6: 268–276

    Article  CAS  Google Scholar 

  23. Braun E, Eichen Y, Sivan U, Ben-Yoseph G. Nature, 1998, 391: 775–778

    Article  CAS  PubMed  Google Scholar 

  24. Brinkers S, Dietrich HRC, de Groote FH, Young IT, Rieger B. J Chem Phys, 2009, 130: 215105

    Article  CAS  PubMed  Google Scholar 

  25. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Science, 2013, 339: 535–539

    Article  CAS  PubMed  Google Scholar 

  26. (a) Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang JQ, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y. Nature, 2014, 510: 522–524

    Article  CAS  PubMed  Google Scholar 

  27. Zhang R, Zhang Y, Zhang Q, Xie H, Qian W, Wei F. ACS Nano, 2013, 7: 6156–6161

    Article  CAS  PubMed  Google Scholar 

  28. Sakurai S, Inaguma M, Futaba DN, Yumura M, Hata K. Small, 2013, 9: 3584–3592

    Article  CAS  PubMed  Google Scholar 

  29. Cui R, Zhao X, Li R, Liu Y, Luo D, Yang F, Li Y. Sci China Chem, 2017, 60: 516–520

    Article  CAS  Google Scholar 

  30. (a) Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG. Nat Mater, 2003, 2: 338–342

    Article  CAS  PubMed  Google Scholar 

  31. Tu X, Manohar S, Jagota A, Zheng M. Nature, 2009, 460: 250–253

    Article  CAS  PubMed  Google Scholar 

  32. (a) Han X, Li Y, Deng Z. Adv Mater, 2007, 19: 1518–1522

    Article  CAS  Google Scholar 

  33. Li Y, Han X, Deng Z. Angew Chem Int Ed, 2007, 46: 7481–7484

    Article  CAS  Google Scholar 

  34. Liu J, Fu S, Yuan B, Li Y, Deng Z. J Am Chem Soc, 2010, 132: 7279–7281

    Article  CAS  PubMed  Google Scholar 

  35. Antonucci A, Kupis-Rozmyslowicz J, Boghossian AA. ACS Appl Mater Interfaces, 2017, 9: 11321–11331

    Article  CAS  PubMed  Google Scholar 

  36. (a) Luo Q, Hou C, Bai Y, Wang R, Liu J. Chem Rev, 2016, 116: 13571–13632

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Zou Q, Yan X. Acta Chim Sin, 2017, 75: 933–942

    Article  CAS  Google Scholar 

  38. (a) Yang Y, Bai X, Fang L, Deng Z. Chin J Chem Phys, 2013, 26: 601–606

    Article  CAS  Google Scholar 

  39. Li Y, Zheng Y, Gong M, Deng Z. Chem Commun, 2012, 48: 3727–3729

    Article  CAS  Google Scholar 

  40. (a) Xu W, Ling X, Xiao J, Dresselhaus MS, Kong J, Xu H, Liu Z, Zhang J. Proc Natl Acad Sci USA, 2012, 109: 9281–9286

    Article  PubMed  Google Scholar 

  41. Khlebtsov BN, Khanadeev VA, Panfilova EV, Bratashov DN, Khlebtsov NG. ACS Appl Mater Interfaces, 2015, 7: 6518–6529

    Article  CAS  PubMed  Google Scholar 

  42. (a) Shao M, Odell J, Humbert M, Yu T, Xia Y. J Phys Chem C, 2013, 117: 4172–4180

    Article  CAS  Google Scholar 

  43. Krittayavathananon A, Srimuk P, Luanwuthi S, Sawangphruk M. Anal Chem, 2014, 86: 12272–12278

    Article  CAS  PubMed  Google Scholar 

  44. (a) Matuschek M, Singh DP, Jeong HH, Nesterov M, Weiss T, Fischer P, Neubrech F, Liu N. Small, 2018, 14: 1702990

    Article  CAS  Google Scholar 

  45. Lim SH, Radha B, Chan JY, Saifullah MSM, Kulkarni GU, Ho GW. ACS Appl Mater Interfaces, 2013, 5: 7274–7281

    Article  CAS  PubMed  Google Scholar 

  46. Walter EC, Favier F, Penner RM. Anal Chem, 2002, 74: 1546–1553

    Article  CAS  PubMed  Google Scholar 

  47. (a) Xiang Y, Luo W, Cai W, Ying CF, Yu X, Zhang X, Liu H, Xu J. Opt Express, 2016, 24: 3849–3857

    Article  PubMed  Google Scholar 

  48. Nam JM, Oh JW, Lee H, Suh YD. Acc Chem Res, 2016, 49: 2746–2755

    Article  CAS  PubMed  Google Scholar 

  49. Wang YL, Fang LL, Chen GL, Song L, Deng Z. Small, 2018, 14: 1703303

    Article  CAS  Google Scholar 

  50. Song W, Wang Y, Zhao B. J Phys Chem C, 2007, 111: 12786–12791

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (21425521), the National Natural Science Foundation of China (21521001), the National Key Research and Development Program of China (2016YFA0201300), and the Collaborative Innovation Center of Suzhou Nano Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxiang Deng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Yang, Y. & Deng, Z. Protein-sheathed SWNT as a versatile scaffold for nanoparticle assembly and superstructured nanowires. Sci. China Chem. 61, 1128–1133 (2018). https://doi.org/10.1007/s11426-018-9307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9307-y

Keywords

Navigation