Skip to main content
Log in

Julolidine-labelled fluorinated block copolymers for the development of two-layer films with highly sensitive vapochromic response

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Fluorinated block copolymers composed of a polystyrene (Sx) first block and a polyacrylate second block carrying hydrophobic/lipophobic perfluorohexyl side chains (AF) were prepared by atom transfer radical polymerization (ATRP). Fluorescence emission properties were imparted to the copolymers by incorporation in the second block of a julolidine-based fluorescent molecular rotor (JCBF). The synthesized block copolymers were used as the fluorescent low-surface energy thin top-layer onto a polystyrene bottom-layer to produce novel two-layer film vapochromic sensors. Contact angle and X-ray photoelectron spectroscopy (XPS) measurements revealed that the two-layer film surfaces were hydrophobic and lipophobic at the same time and highly enriched in fluorine content as a result of the effective segregation of the perfluorinated tails to the polymer-air interface. The fluorescence intensity of the two-layer films decreased significantly when they were exposed to vapours of organic solvents, including tetrahydrofurane, chloroform, and trifluorotoluene. However, an AF content-dependent sensing behaviour was also observed, with the two-layer films containing the copolymer with the shorter fluorinated block giving a more rapid and almost quantitative decrease in fluorescence variation. Fluorescence emission of the films was also proved to vary with temperature. Both the vapochromic and thermochromic responses were reversible after successive solicitation cycles. The fluorescence variation of the two-layer films was much more marked than that of the corresponding PS/JCBF blend, thus providing a system potentially applicable as highly sensitive volatile organic compound (VOC) sensor, thanks to the active role of the fluorinated block in promoting the migration of the fluorophore to the outermost surface layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blanazs A, Armes SP, Ryan AJ. Macromol Rapid Commun, 2009, 30: 267–277

    Article  CAS  PubMed  Google Scholar 

  2. Mai Y, Eisenberg A. Chem Soc Rev, 2012, 41: 5969–5985

    Article  CAS  PubMed  Google Scholar 

  3. Matyjaszewski K, Xia J. Chem Rev, 2001, 101: 2921–2990

    Article  CAS  Google Scholar 

  4. Riess G. Prog Polym Sci, 2003, 28: 1107–1170

    Article  CAS  Google Scholar 

  5. Zhao B, Brittain WJ. Prog Polym Sci, 2000, 25: 677–710

    Article  CAS  Google Scholar 

  6. Galli G, Martinelli E. Macromol Rapid Commun, 2017, 38: 1600704

    Article  CAS  Google Scholar 

  7. Martinelli E, Del Moro I, Galli G, Barbaglia M, Bibbiani C, Mennillo E, Oliva M, Pretti C, Antonioli D, Laus M. ACS Appl Mater Interfaces, 2015, 7: 8293–8301

    Article  CAS  PubMed  Google Scholar 

  8. Martinelli E, Gunes D, Wenning BM, Ober CK, Finlay JA, Callow ME, Callow JA, Di Fino A, Clare AS, Galli G. Biofouling, 2016, 32: 81–93

    Article  CAS  PubMed  Google Scholar 

  9. Hansen NML, Jankova K, Hvilsted S. Eur Polym J, 2007, 43: 255–293

    Article  CAS  Google Scholar 

  10. Harrison WL, Hickner MA, Kim YS, McGrath JE. Fuel Cells, 2005, 5: 201–212

    Article  CAS  Google Scholar 

  11. Imae T. Curr Opin Colloid Interface Sci, 2003, 8: 307–314

    Article  CAS  Google Scholar 

  12. Kharitonov AP. Prog Org Coatings, 2008, 61: 192–204

    Article  CAS  Google Scholar 

  13. Sawada H. Prog Polym Sci, 2007, 32: 509–533

    Article  CAS  Google Scholar 

  14. Hikita M, Tanaka K, Nakamura T, Kajiyama T, Takahara A. Langmuir, 2004, 20: 5304–5310

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Zheng X, Xia Z, Lu M. Prog Org Coatings, 2016, 97: 122–132

    Article  CAS  Google Scholar 

  16. Yamamoto I. Fluoroalkyl acrylate polymers and their applications. In: Ameduri B, Sawada H, Eds. Fluorinated Polymers: Volume 2: Applications. London: Royal Society of Chemistry, 2017. 32–53

    Google Scholar 

  17. Grate JW. Chem Rev, 2008, 108: 726–745

    Article  CAS  PubMed  Google Scholar 

  18. Liang G, Ren F, Gao H, Wu Q, Zhu F, Tang BZ. ACS Sens, 2016, 1: 1272–1278

    Article  CAS  Google Scholar 

  19. Broza YY, Haick H. Nanomedicine, 2013, 8: 785–806

    Article  CAS  PubMed  Google Scholar 

  20. Echeverría JC, Faustini M, Garrido JJ. Sens Actuat B-Chem, 2016, 222: 1166–1174

    Article  CAS  Google Scholar 

  21. Elosua C, Matias I, Bariain C, Arregui F. Sensors, 2006, 6: 1440–1465

    Article  CAS  Google Scholar 

  22. Evyapan M, Hanoosh WS, Hassan AK. Anal Lett, 2017, 50: 2579–2594

    Article  CAS  Google Scholar 

  23. Hromadka J, Korposh S, Partridge M, James SW, Davis F, Crump D, Tatam RP. Sensors, 2017, 17: 205–216

    Article  CAS  Google Scholar 

  24. Hromadka J, Tokay B, Correia R, Morgan SP, Korposh S. Sens Actuat B-Chem, 2018, 260: 685–692

    Article  CAS  Google Scholar 

  25. Jiang Y, Li G, Zhu D, Su Z, Bryce MR. J Mater Chem C, 2017, 5: 12189–12193

    Article  CAS  Google Scholar 

  26. Ng CL, Kai FM, Tee MH, Tan N, Hemond HF. Sensors, 2018, 18: 265

    Article  CAS  Google Scholar 

  27. Terra IAA, Sanfelice RC, Valente GT, Correa DS. J Appl Polym Sci, 2018, 135: 46128

    Article  CAS  Google Scholar 

  28. Zhao C, Gan X, Yuan Q, Hu S, Fang L, Zhao J. Adv Opt Mater, 2018, 6: 1700882

    Article  CAS  Google Scholar 

  29. Gao M, Tang BZ. ACS Sens, 2017, 2: 1382–1399

    Article  CAS  PubMed  Google Scholar 

  30. Liang G, Ren F, Gao H, Zhu F, Wu Q, Tang BZ. J Mater Chem A, 2017, 5: 2115–2122

    Article  CAS  Google Scholar 

  31. Jenkin ME, Saunders SM, Pilling MJ. Atmos Environ, 1997, 31: 81–104

    Article  CAS  Google Scholar 

  32. Kim YM, Harrad S, Harrison RM. Environ Sci Technol, 2001, 35: 997–1004

    Article  CAS  PubMed  Google Scholar 

  33. Martini G, Martinelli E, Ruggeri G, Galli G, Pucci A. Dyes Pigments, 2015, 113: 47–54

    Article  CAS  Google Scholar 

  34. Iasilli G, Martini F, Minei P, Ruggeri G, Pucci A. Faraday Discuss, 2017, 196: 113–129

    Article  CAS  PubMed  Google Scholar 

  35. Minei P, Pucci A. Polym Int, 2016, 65: 609–620

    Article  CAS  Google Scholar 

  36. Minei P, Ahmad M, Barone V, Brancato G, Passaglia E, Bottari G, Pucci A. Polym Adv Technol, 2016, 27: 429–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Minei P, Koenig M, Battisti A, Ahmad M, Barone V, Torres T, Guldi DM, Brancato G, Bottari G, Pucci A. J Mater Chem C, 2014, 2: 9224–9232

    Article  CAS  Google Scholar 

  38. Borelli M, Iasilli G, Minei P, Pucci A. Molecules, 2017, 22: 1306

    Article  CAS  PubMed Central  Google Scholar 

  39. Zhu Q, Yang W, Zheng S, Sung HHY, Williams ID, Liu S, Tang BZ. J Mater Chem C, 2016, 4: 7383–7386

    Article  CAS  Google Scholar 

  40. Allen BD, Benniston AC, Harriman A, Rostron SA, Yu C. Phys Chem Chem Phys, 2005, 7: 3035–3040

    Article  CAS  PubMed  Google Scholar 

  41. Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA. Bioorg Chem, 2005, 33: 415–425

    Article  CAS  PubMed  Google Scholar 

  42. Haidekker MA, Nipper M, Mustafic A, Lichlyter D, Dakanali M, Theodorakis EA. Dyes with segmental mobility: Molecular rotors. In: Advanced Fluorescence Reporters in Chemistry and Biology I. New York: Springer, 2010. 267–308

    Google Scholar 

  43. Haidekker MA, Theodorakis EA. Org Biomol Chem, 2007, 5: 1669–1678

    Article  CAS  PubMed  Google Scholar 

  44. Haidekker MA, Theodorakis EA. J Biol Eng, 2010, 4: 11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuimova MK, Yahioglu G, Levitt JA, Suhling K. J Am Chem Soc, 2008, 130: 6672–6673

    Article  CAS  PubMed  Google Scholar 

  46. Sutharsan J, Lichlyter D, Wright NE, Dakanali M, Haidekker MA, Theodorakis EA. Tetrahedron, 2010, 66: 2582–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou F, Shao J, Yang Y, Zhao J, Guo H, Li X, Ji S, Zhang Z. Eur J Org Chem, 2011, 2011: 4773–4787

    Article  CAS  Google Scholar 

  48. Hong Y, Lam JWY, Tang BZ. Chem Soc Rev, 2011, 40: 5361–5388

    Article  CAS  PubMed  Google Scholar 

  49. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ. Adv Mater, 2014, 26: 5429–5479

    Article  CAS  PubMed  Google Scholar 

  50. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    Article  CAS  PubMed  Google Scholar 

  51. Guazzelli E, Masotti E, Biver T, Pucci A, Martinelli E, Galli G. J Polym Sci Part A-Polym Chem, 2018, 56: 797–804

    Article  CAS  Google Scholar 

  52. Martinelli E, Fantoni C, Galli G, Gallot B, Glisenti A. Mol Crysts Liquid Crysts, 2009, 500: 51–62

    Article  CAS  Google Scholar 

  53. Owens DK, Wendt RC. J Appl Polym Sci, 1969, 13: 1741–1747

    Article  CAS  Google Scholar 

  54. Kaelble DH. J Adhes, 1970, 2: 66–81

    Article  CAS  Google Scholar 

  55. Shirley DA. Phys Rev B, 1972, 5: 4709–4714

    Article  Google Scholar 

  56. Maier G. Prog Polym Sci, 2001, 26: 3–65

    Article  CAS  Google Scholar 

  57. Martinelli E, Sarvothaman MK, Alderighi M, Galli G, Mielczarski E, Mielczarski JA. J Polym Sci A-Polym Chem, 2012, 50: 2677–2686

    Article  CAS  Google Scholar 

  58. Krishnan S, Wang N, Ober CK, Finlay JA, Callow ME, Callow JA, Hexemer A, Sohn KE, Kramer EJ, Fischer DA. Biomacromolecules, 2006, 7: 1449–1462

    Article  CAS  PubMed  Google Scholar 

  59. Nishino T, Urushihara Y, Meguro M, Nakamae K. J Colloid Interface Sci, 2005, 283: 533–538

    Article  CAS  PubMed  Google Scholar 

  60. Galli G, Martinelli E, Chiellini E, Ober CK, Glisenti A. Mol Crysts Liquid Crysts, 2005, 441: 211–226

    Article  CAS  Google Scholar 

  61. Martinelli E, Glisenti A, Gallot B, Galli G. Macromol Chem Phys, 2009, 210: 1746–1753

    Article  CAS  Google Scholar 

  62. Borkar S, Jankova K, Siesler HW, Hvilsted S. Macromolecules, 2004, 37: 788–794

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Pisa (fondi Progetti di Ricerca di Ateneo, PRA_2017_28). The authors are grateful to Prof. A. Glisenti (University of Padova) for assistance with XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elisa Martinelli or Andrea Pucci.

Electronic supplementary material

11426_2018_9302_MOESM1_ESM.docx

Julolidine-labelled fluorinated block copolymers for the development of two-layer films with highly sensitive vapochromic response

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorgi, C., Martinelli, E., Galli, G. et al. Julolidine-labelled fluorinated block copolymers for the development of two-layer films with highly sensitive vapochromic response. Sci. China Chem. 61, 947–956 (2018). https://doi.org/10.1007/s11426-018-9302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9302-6

Keywords

Navigation