Skip to main content
Log in

Preparation of pH- and reductive-responsive prodrug nanoparticles via polymerization-induced self-assembly

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

pH- and reductive-responsive prodrug nanoparticles are constructed via a highly efficient strategy, polymerization-induced selfassembly (PISA). First, reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(diisopropylamino) ethyl methacrylate (DIPEMA) and camptothecin prodrug monomer (CPTM) using biocompatible poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA-CPDB) as the macro RAFT agent is carried out, forming prodrug diblock copolymer PHPMA-P (DIPEMA-co-CPTM). Then, simultaneous fulfillment of polymerization, self-assembly, and drug encapsulation are achieved via RAFT dispersion polymerization of benzyl methacrylate (BzMA) using the PHPMA-P(DIPEMA-co-CPTM) as the macro RAFT agent. The prodrug nanoparticles have three layers, the biocompatible shell (PHPMA), the drug-conjugated middle layer (P(DIPEMA-co-CPTM)) and the PBzMA core, and relatively high concentration (250 mg/g). The prodrug nanoparticles can respond to two stimuli (reductive and acidic conditions). Due to reductive microenvironment of cytosol, the cleavage of the conjugated camptothecin (CPT) within the prodrug nanoparticles could be effectively triggered. pH-Induced hydrophobic/ hydrophilic transition of the PDIPEMA chains results in faster diffusion of GSH into the CPTM units, thus accelerated release of CPT is observed in mild acidic and reductive conditions. Cell viability assays show that the prodrug nanoparticles exhibit well performance of intracellular drug delivery and good anticancer activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Y, Xu CF, Iqbal S, Yang XZ, Wang J. Adv Drug Deliver Rev, 2017, 115: 98–114

    Article  CAS  Google Scholar 

  2. Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Drug Deliver, 2017, 24: 539–557

    Article  CAS  Google Scholar 

  3. Chen J, Ding J, Xiao C, Zhuang X, Chen X. Biomater Sci, 2015, 3: 988–1001

    Article  CAS  PubMed  Google Scholar 

  4. Kaur S, Prasad C, Balakrishnan B, Banerjee R. Biomater Sci, 2015, 3: 955–987

    Article  CAS  PubMed  Google Scholar 

  5. Zhuang Y, Wang D, Yin C, Deng H, Sun M, He L, Su Y, Zhu X. Sci China Chem, 2016, 59: 1600–1608

    Article  CAS  Google Scholar 

  6. Wang G, Song W, Shen N, Yu H, Deng M, Tang Z, Fu X, Chen X. Sci China Mater, 2017, 60: 995–1007

    Article  Google Scholar 

  7. Gao YJ, Qiao ZY, Wang H. Sci China Chem, 2016, 59: 991–1002

    Article  CAS  Google Scholar 

  8. Wang W, Ma X, Yu X. Chin J Polym Sci, 2017, 35: 1352–1362

    Article  CAS  Google Scholar 

  9. Liu Q, Hong CY, Pan CY. Acta Polym Sin, 2015, 15–24

    Google Scholar 

  10. Mao J, Li Y, Wu T, Yuan C, Zeng B, Xu Y, Dai L. ACS Appl Mater Interfaces, 2016, 8: 17109–17117

    Article  CAS  PubMed  Google Scholar 

  11. Zhang WJ, Hong CY, Pan CY. ACS Appl Mater Interfaces, 2017, 9: 15086–15095

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Zhang H, Qin A, Jin Q, Tang BZ, Ji J. Sci China Chem, 2016, 59: 1609–1615

    Article  CAS  Google Scholar 

  13. Wang LH, Hong CY. Acta Polym Sin, 2017, 2: 200–213

    Google Scholar 

  14. Jia H, Chen S, Zhuo R, Feng J, Zhang X. Sci China Chem, 2016, 59: 1397–1404

    Article  CAS  Google Scholar 

  15. Schafer FQ, Buettner GR. Free Radical Biol Med, 2001, 30: 1191–1212

    Article  CAS  Google Scholar 

  16. Hu X, Hu J, Tian J, Ge Z, Zhang G, Luo K, Liu S. J Am Chem Soc, 2013, 135: 17617–17629

    Article  CAS  PubMed  Google Scholar 

  17. Zhang WJ, Hong CY, Pan CY. Biomacromolecules, 2016, 17: 2992–2999

    Article  CAS  PubMed  Google Scholar 

  18. He W, Hu X, Jiang W, Liu R, Zhang D, Zhang J, Li Z, Luan Y. Adv Healthc Mater, 2017, 6: 1700829

    Article  CAS  Google Scholar 

  19. Zhang F, Zhu G, Jacobson O, Liu Y, Chen K, Yu G, Ni Q, Fan J, Yang Z, Xu F, Fu X, Wang Z, Ma Y, Niu G, Zhao X, Chen X. ACS Nano, 2017, 11: 8838–8848

    Article  CAS  PubMed  Google Scholar 

  20. Xu C, Wang XJ, Wang CH, Yan HS, Liu KL. Acta Polym Sin, 2015, 65–71

    Google Scholar 

  21. Wu Q, Niu M, Chen X, Tan L, Fu C, Ren X, Ren J, Li L, Xu K, Zhong H, Meng X. Biomaterials, 2018, 162: 132–143

    Article  CAS  PubMed  Google Scholar 

  22. Hu X, Zhang Y, Xie Z, Jing X, Bellotti A, Gu Z. Biomacromolecules, 2017, 18: 649–673

    Article  CAS  PubMed  Google Scholar 

  23. Fan W, Li M, Hong C, Pan C. Acta Chim Sin, 2015, 73: 330–336

    Article  CAS  Google Scholar 

  24. Wang LH, Zhang Z, Zeng TY, Xia L, Nie X, Chen G, You YZ. Acta Polym Sin, 2017, 12: 1883–1904

    Google Scholar 

  25. Zheng G, Pan C. Macromolecules, 2006, 39: 95–102

    Article  CAS  Google Scholar 

  26. An Z, Shi Q, Tang W, Tsung CK, Hawker CJ, Stucky GD. J Am Chem Soc, 2007, 129: 14493–14499

    Article  CAS  PubMed  Google Scholar 

  27. Chang J, Zhang W, Hong C. Chin J Chem, 2017, 35: 1016–1022

    Article  CAS  Google Scholar 

  28. Chen S, Shi P, Zhang W. Chin J Polym Sci, 2017, 35: 455–479

    Article  CAS  Google Scholar 

  29. Charleux B, Delaittre G, Rieger J, D’Agosto F. Macromolecules, 2012, 45: 6753–6765

    Article  CAS  Google Scholar 

  30. Rieger J. Macromol Rapid Commun, 2015, 36: 1458–1471

    Article  CAS  PubMed  Google Scholar 

  31. Derry MJ, Fielding LA, Armes SP. Prog Polym Sci, 2016, 52: 1–18

    Article  CAS  Google Scholar 

  32. Pei Y, Lowe AB, Roth PJ. Macromol Rapid Commun, 2017, 38: 1600528

    Article  CAS  Google Scholar 

  33. Yeow J, Boyer C. Adv Sci, 2017, 4: 1700137

    Article  CAS  Google Scholar 

  34. Zhang WJ, Hong CY, Pan CY. J Mater Chem A, 2014, 2: 7819–7828

    Article  CAS  Google Scholar 

  35. Wang X, Figg CA, Lv X, Yang Y, Sumerlin BS, An Z. ACS Macro Lett, 2017, 6: 337–342

    Article  CAS  Google Scholar 

  36. Zhang Q, Zhu S. ACS Macro Lett, 2015, 4: 755–758

    Article  CAS  Google Scholar 

  37. Chen X, Liu L, Huo M, Zeng M, Peng L, Feng A, Wang X, Yuan J. Angew Chem Int Ed, 2017, 56: 16541–16545

    Article  CAS  Google Scholar 

  38. Ding Y, Cai M, Cui Z, Huang L, Wang L, Lu X, Cai Y. Angew Chem Int Ed, 2018, 57: 1053–1056

    Article  CAS  Google Scholar 

  39. Tan J, Huang C, Liu D, Li X, He J, Xu Q, Zhang L. ACS Macro Lett, 2017, 6: 298–303

    Article  CAS  Google Scholar 

  40. Zhang XY, Liu DM, Lv XH, Sun M, Sun XL, Wan WM. Macromol Rapid Commun, 2016, 37: 1735–1741

    Article  CAS  PubMed  Google Scholar 

  41. Qiao XG, Lambert O, Taveau JC, Dugas PY, Charleux B, Lansalot M, Bourgeat-Lami E. Macromolecules, 2017, 50: 3796–3806

    Article  CAS  Google Scholar 

  42. Zhang WJ, Hong CY, Pan CY. Macromolecules, 2014, 47: 1664–1671

    Article  CAS  Google Scholar 

  43. Wright DB, Touve MA, Adamiak L, Gianneschi NC. ACS Macro Lett, 2017, 6: 925–929

    Article  CAS  Google Scholar 

  44. Zhang WJ, Hong CY, Pan CY. Biomacromolecules, 2017, 18: 1210–1217

    Article  CAS  PubMed  Google Scholar 

  45. Qiu L, Xu CR, Zhong F, Hong CY, Pan CY. ACS Appl Mater Interfaces, 2016, 8: 18347–18359

    Article  CAS  PubMed  Google Scholar 

  46. Scales CW, Vasilieva YA, Convertine AJ, Lowe AB, McCormick CL. Biomacromolecules, 2005, 6: 1846–1850

    Article  CAS  PubMed  Google Scholar 

  47. Mitsukami Y, Donovan MS, Lowe AB, McCormick CL. Macromolecules, 2001, 34: 2248–2256

    Article  CAS  Google Scholar 

  48. Zhang W, Fan W, Li M, Hong C, Pan C. Acta Chim Sin, 2012, 70: 1690–1696

    Article  CAS  Google Scholar 

  49. Li JY, Qiu L, Xu XF, Pan CY, Hong CY, Zhang WJ. J Mater Chem B, 2018, 6: 1678–1687

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0205601) and the National Natural Science Foundation of China (51625305, 21704095, 21774113, 21525420).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Jian Zhang or Ye-Zi You.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Zhang, WG., Li, JW. et al. Preparation of pH- and reductive-responsive prodrug nanoparticles via polymerization-induced self-assembly. Sci. China Chem. 61, 1159–1166 (2018). https://doi.org/10.1007/s11426-018-9268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9268-y

Keywords

Navigation