Skip to main content
Log in

Using MALDI-TOF MS coupled with a high-mass detector to directly analyze intact proteins in thyroid tissues

Science China Chemistry Aims and scope Submit manuscript

Abstract

Protein analysis is vital for biological and clinical research, but the measurement of unseparated, intact and high-mass proteins is also a challenging task by mass spectrometry-based methods. Here, we present a protocol for rapid and high-throughput analysis of intact proteins in tissue samples using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) combined with a high-mass detector platform. The method involves tissue specimens that undergo a simple protein extraction before MALDI-MS analysis. Using this method, the high abundance proteins in human thyroid carcinoma and paracarcinoma tissues were successfully investigated, and the mass spectra of the tissues of the 30 illustrated thyroid cancers showed remarkable differences. The peak intensity revealed a significant increase in human albumin in thyroid carcinoma tissues (p<0.05). To validate the feasibility and credibility of this method, label-free proteomics quantitative analysis and Western blotting were used to relatively quantify the proteins in these tissues. Those results demonstrated a nearly 3-fold difference in human albumin levels between thyroid carcinoma and para-carcinoma tissues, which were consistent with the results of our method. The advantages of our method are easy sample handling, remarkable reproducibility and the ability to analyze high-mass proteins without digestion, which make them have the potential to be used in biological research and in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Scherl A. Methods, 2015, 81: 3–14

    Article  CAS  PubMed  Google Scholar 

  2. Chace DH. Chem Rev, 2001, 101: 445–478

    Article  CAS  PubMed  Google Scholar 

  3. de la Rica R, Stevens MM. Nat Nanotech, 2012, 7: 821–824

    Article  CAS  Google Scholar 

  4. Hu R, Liu T, Zhang XB, Yang Y, Chen T, Wu C, Liu Y, Zhu G, Huan S, Fu T, Tan W. Anal Chem, 2015, 87: 7746–7753

    Article  CAS  PubMed  Google Scholar 

  5. Karns K, Herr AE. Anal Chem, 2011, 83: 8115–8122

    Article  CAS  PubMed  Google Scholar 

  6. Demirev PA, Ho Y-P, Ryzhov V, Fenselau C. Bioinformatics, 1999, 16: 851–856

    Google Scholar 

  7. Picotti P, Clément-Ziza M, Lam H, Campbell DS, Schmidt A, Deutsch EW, Röst H, Sun Z, Rinner O, Reiter L, Shen Q, Michaelson JJ, Frei A, Alberti S, Kusebauch U, Wollscheid B, Moritz RL, Beyer A, Aebersold R. Nature, 2013, 494: 266–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qi W, Guan Q, Sun T, Cao Y, Zhang L, Guo Y. Anal Chim Acta, 2015, 870: 75–82

    Article  CAS  PubMed  Google Scholar 

  9. Leng J, Guan Q, Sun T, Wang H, Cui J, Liu Q, Zhang Z, Zhang M, Guo Y. Anal Chim Acta, 2015, 887: 148–154

    Article  CAS  PubMed  Google Scholar 

  10. Cao Y, Guan Q, Sun T, Wang H, Leng J, Guo Y. Anal Chim Acta, 2014, 849: 19–26

    Article  CAS  PubMed  Google Scholar 

  11. Fan RJ, Guan Q, Zhang F, Leng JP, Sun TQ, Guo YL. Anal Chim Acta, 2016, 908: 132–140

    Article  CAS  PubMed  Google Scholar 

  12. Monaghan PJ, Keevil BG, Trainer PJ. Clin Endocrinol, 2013, 78: 344–346

    Article  CAS  Google Scholar 

  13. Hale JE. Inter J Proteom, 2013, 2013: 6

    Article  CAS  Google Scholar 

  14. Hoofnagle AN, Wener MH. J Immun Methods, 2009, 347: 3–11

    Article  CAS  Google Scholar 

  15. Grant RP, Hoofnagle AN. Clin Chem, 2014, 60: 941–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Becker JO, Hoofnagle AN. Bioanalysis, 2012, 4: 281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Strathmann FG, Hoofnagle AN. Am J Clin Pathol, 2011, 136: 609–616

    Article  CAS  PubMed  Google Scholar 

  18. Addona TA, Shi X, Keshishian H, Mani DR, Burgess M, Gillette MA, Clauser KR, Shen D, Lewis GD, Farrell LA, Fifer MA, Sabatine MS, Gerszten RE, Carr SA. Nat Biotechnol, 2011, 29: 635–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prakash A, Rezai T, Krastins B, Sarracino D, Athanas M, Russo P, Zhang H, Tian Y, Li Y, Kulasingam V, Drabovich A, Smith CR, Batruch I, Oran PE, Fredolini C, Luchini A, Liotta L, Petricoin E, Diamandis EP, Chan DW, Nelson R, Lopez MF. J Proteom Res, 2012, 11: 3986–3995

    Article  CAS  Google Scholar 

  20. Schulz-Knappe P, Schrader M, Zucht H-D. Comb Chem High T Scr, 2005, 8: 697–704

    CAS  Google Scholar 

  21. Smith RD, Anderson GA, Lipton MS, Pasa-Tolic L, Shen Y, Conrads TP, Veenstra TD, Udseth HR. Proteomics, 2002, 2: 513–523

    Article  CAS  PubMed  Google Scholar 

  22. Zhu L, Zhang J, Ren S, Guo Y. Int J Mass Spectrometry, 2013, 343-344: 23–27

    Article  CAS  Google Scholar 

  23. Wang H, Wang H, Zhang L, Zhang J, Leng J, Cai T, Guo Y. Anal Chim Acta, 2011, 707: 100–106

    Article  CAS  PubMed  Google Scholar 

  24. Wang H, Wang H, Zhang L, Zhang J, Guo Y. Anal Chim Acta, 2011, 690: 1–9

    Article  CAS  PubMed  Google Scholar 

  25. Lasch P, Drevinek M, Nattermann H, Grunow R, Stammler M, Dieckmann R, Schwecke T, Naumann D. Anal Chem, 2010, 82: 8464–8475

    Article  CAS  PubMed  Google Scholar 

  26. Pineda FJ, Lin JS, Fenselau C, Demirev PA. Anal Chem, 2000, 72: 3739–3744

    Article  CAS  PubMed  Google Scholar 

  27. Claydon MA, Davey SN, Edwards-Jones V, Gordon DB. Nat Biotechnol, 1996, 14: 1584–1586

    Article  CAS  PubMed  Google Scholar 

  28. Min KW, Bang JY, Kim KP, Kim WS, Lee SH, Shanta SR, Lee JH, Hong JH, Lim SD, Yoo YB, Na CH. J Korean Med Sci, 2014, 29: 934–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Remoortere A, van Zeijl RJM, van den Oever N, Franck J, Longuespée R, Wisztorski M, Salzet M, Deelder AM, Fournier I, McDonnell LA. J Am Soc Mass Spectrometry, 2010, 21: 1922–1929

    Google Scholar 

  30. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. J Control Release, 2000, 65: 271–284

    Article  CAS  PubMed  Google Scholar 

  31. Chen F, Gerber S, Heuser K, Korkhov VM, Lizak C, Mireku S, Locher KP, Zenobi R. Anal Chem, 2013, 85: 3483–3488

    Article  CAS  PubMed  Google Scholar 

  32. Nazabal A, Wenzel RJ, Zenobi R. Anal Chem, 2006, 78: 3562–3570

    Article  CAS  PubMed  Google Scholar 

  33. Lepvrier E, Moullintraffort L, Nigen M, Goude R, Allegro D, Barbier P, Peyrot V, Thomas D, Nazabal A, Garnier C. Anal Chem, 2015, 87: 7043–7051

    Article  CAS  PubMed  Google Scholar 

  34. Soboleva SE, Dmitrenok PS, Verkhovod TD, Buneva VN, Sedykh SE, Nevinsky GA. J Mol Recogn, 2015, 28: 20–34

    Article  CAS  Google Scholar 

  35. Weidmann S, Zenobi R. J Am Soc Mass Spectrom, 2014, 25: 950–954

    Article  CAS  PubMed  Google Scholar 

  36. Weidmann S, Mikutis G, Barylyuk K, Zenobi R. J Am Soc Mass Spectrom, 2013, 24: 1396–1404

    Article  CAS  PubMed  Google Scholar 

  37. Maeda H. Adv Drug Deliver Rev, 2015, 91: 3–6

    Article  CAS  Google Scholar 

  38. Maeda H, Tsukigawa K, Fang J. Microcirculation, 2016, 23: 173–182

    Article  CAS  PubMed  Google Scholar 

  39. Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, Maeda H. Jpn J Cancer Res, 1998, 89: 307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakamura H, Fang J, Jun F, Maeda H. Expert Opin Drug Deliv, 2015, 12: 53–64

    Article  CAS  PubMed  Google Scholar 

  41. Stehle G, Sinn H, Wunder A, Schrenk HH, Stewart JCM, Hartung G, Maier-Borst W, Heene DL. Crit Rev Oncol/Hematol, 1997, 26: 77–100

    Article  CAS  Google Scholar 

  42. Islan GA, Ruiz ME, Morales JF, Sbaraglini ML, Enrique AV, Burton G, Talevi A, Bruno-Blanch LE, Castro GR. J Mater Chem B, 2017, 5: 3132–3144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21672250), Chinese Academy of Sciences (YZ201544), National Key Technology Support Program (2015BAK45B01) and the Shanghai Municipal Planning Commission of Science and Research Fund for Young Scholar (20154Y0050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhang, Tuan-Qi Sun or Yin-Long Guo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SS., Wang, YJ., Zhang, J. et al. Using MALDI-TOF MS coupled with a high-mass detector to directly analyze intact proteins in thyroid tissues. Sci. China Chem. 61, 871–878 (2018). https://doi.org/10.1007/s11426-017-9230-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9230-1

Keywords

Navigation