Advertisement

Science China Chemistry

, Volume 61, Issue 6, pp 725–731 | Cite as

N-doped carbon supported Pd catalysts for N-formylation of amines with CO2/H2

  • Xiaoying Luo
  • Hongye Zhang
  • Zhengang Ke
  • Cailing Wu
  • Shien Guo
  • Yunyan Wu
  • Bo Yu
  • Zhimin Liu
Articles

Abstract

Using mesoporous N-doped carbons (NCs) derived from glucose and melamine as the supports, a series of Pd/NC catalysts were prepared, in which Pd nanoparticles with average size<2.0 nm were uniformly distributed on the supports. It was indicated that the resultant Pd/NC catalysts were effective for N-formylation of amines with CO2 and H2 in ethanol without any additives. Especially, the catalyst Pd/NC-800-6.9% containing quaternary N showed the best performance, affording a series of formylamides in good or even excellent yields. Further investigation reveals that the interaction between the Pd nanoparticles and quaternary nitrogen in the NC support was responsible for the good performance of the catalyst.

Keywords

Pd/NC C–N formation N-formylation CO2 H2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Chinese Academy of Sciences (QYZDY-SSW-SLH013) and the National Natural Science Foundation of China (21533011, 21503239).

Supplementary material

11426_2017_9215_MOESM1_ESM.pdf (4.6 mb)
N-doped carbon supported Pd catalysts for N-formylation of amines with CO2/H2

References

  1. 1.
    Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F. Chem Rev, 2017, 117: 9804–9838CrossRefGoogle Scholar
  2. 2.
    Zhu Q, Ma J, Kang X, Sun X, Liu H, Hu J, Liu Z, Han B. Angew Chem Int Ed, 2016, 55: 9012–9016CrossRefGoogle Scholar
  3. 3.
    Li Y, Chan SH, Sun Q. Nanoscale, 2015, 7: 8663–8683CrossRefGoogle Scholar
  4. 4.
    Dong K, Razzaq R, Hu Y, Ding K. Top Curr Chem, 2017, 375: 23CrossRefGoogle Scholar
  5. 5.
    Sakakura T, Choi JC, Yasuda H. Chem Rev, 2007, 107: 2365–2387CrossRefGoogle Scholar
  6. 6.
    Cui X, Dai X, Zhang Y, Deng Y, Shi F. Chem Sci, 2014, 5: 649–655CrossRefGoogle Scholar
  7. 7.
    Bobbink FD, Das S, Dyson PJ. Nat Protoc, 2017, 12: 417–428CrossRefGoogle Scholar
  8. 8.
    Daw P, Chakraborty S, Leitus G, Diskin-Posner Y, Ben-David Y, Milstein D. ACS Catal, 2017, 7: 2500–2504CrossRefGoogle Scholar
  9. 9.
    Liu XF, Li XY, Qiao C, Fu HC, He LN. Angew Chem Int Ed, 2017, 56: 7425–7429CrossRefGoogle Scholar
  10. 10.
    Mitsudome T, Urayama T, Fujita S, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K. ChemCatChem, 2017, 9: 3632–3636CrossRefGoogle Scholar
  11. 11.
    Zhao TX, Zhai GW, Liang J, Li P, Hu XB, Wu YT. Chem Commun, 2017, 53: 8046–8049CrossRefGoogle Scholar
  12. 12.
    Schmid L, Canonica A, Baiker A. Appl Catal A-Gen, 2003, 255: 23–33CrossRefGoogle Scholar
  13. 13.
    Nguyen TVQ, Yoo WJ, Kobayashi S. Angew Chem Int Ed, 2015, 54: 9209–9212CrossRefGoogle Scholar
  14. 14.
    Jacquet O, Das Neves Gomes C, Ephritikhine M, Cantat T. J Am Chem Soc, 2012, 134: 2934–2937CrossRefGoogle Scholar
  15. 15.
    Molla RA, Bhanja P, Ghosh K, Islam SS, Bhaumik A, Islam SM. ChemCatChem, 2017, 9: 1939–1946CrossRefGoogle Scholar
  16. 16.
    Cui X, Zhang Y, Deng Y, Shi F. Chem Commun, 2014, 50: 189–191CrossRefGoogle Scholar
  17. 17.
    Yang ZZ, Yu B, Zhang H, Zhao Y, Ji G, Liu Z. RSC Adv, 2015, 5: 19613–19619CrossRefGoogle Scholar
  18. 18.
    Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson PJ, Scopelliti R, Laurenczy G, Beller M. Angew Chem Int Ed, 2010, 49: 9777–9780CrossRefGoogle Scholar
  19. 19.
    Zhang L, Han Z, Zhao X, Wang Z, Ding K. Angew Chem Int Ed, 2015, 54: 6186–6189CrossRefGoogle Scholar
  20. 20.
    Ju P, Chen J, Chen A, Chen L, Yu Y. ACS Sustain Chem Eng, 2017, 5: 2516–2528CrossRefGoogle Scholar
  21. 21.
    Bi QY, Lin JD, Liu YM, Xie SH, He HY, Cao Y. Chem Commun, 2014, 50: 9138–9140CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Wang H, Yuan H, Shi F. ACS Sustain Chem Eng, 2017, 5: 5758–5765CrossRefGoogle Scholar
  23. 23.
    Liu H, Mei Q, Xu Q, Song J, Liu H, Han B. Green Chem, 2017, 19: 196–201CrossRefGoogle Scholar
  24. 24.
    Yang L, Zhao Y, Chen S, Wu Q, Wang X, Hu Z. Chin J Catal, 2013, 34: 1986–1991CrossRefGoogle Scholar
  25. 25.
    Kicinski W, Szala M, Bystrzejewski M. Carbon, 2014, 68: 1–32CrossRefGoogle Scholar
  26. 26.
    Li R, Wei Z, Gou X. ACS Catal, 2015, 5: 4133–4142CrossRefGoogle Scholar
  27. 27.
    Ma X, Ning G, Qi C, Xu C, Gao J. ACS Appl Mater Interfaces, 2014, 6: 14415–14422CrossRefGoogle Scholar
  28. 28.
    Patel MA, Luo F, Khoshi MR, Rabie E, Zhang Q, Flach CR, Mendelsohn R, Garfunkel E, Szostak M, He H. ACS Nano, 2016, 10: 2305–2315CrossRefGoogle Scholar
  29. 29.
    Wang S, Iyyamperumal E, Roy A, Xue Y, Yu D, Dai L. Angew Chem Int Ed, 2011, 50: 11756–11760CrossRefGoogle Scholar
  30. 30.
    Xu J, Zhao Y, Shen C, Guan L. ACS Appl Mater Interfaces, 2013, 5: 12594–12601CrossRefGoogle Scholar
  31. 31.
    Yang S, Peng L, Huang P, Wang X, Sun Y, Cao C, Song W. Angew Chem Int Ed, 2016, 55: 4016–4020CrossRefGoogle Scholar
  32. 32.
    Modak A, Bhaumik A. J Mol Catal A-Chem, 2016, 425: 147–156CrossRefGoogle Scholar
  33. 33.
    Ma Z, Zhang H, Yang Z, Ji G, Yu B, Liu X, Liu Z. Green Chem, 2016, 18: 1976–1982CrossRefGoogle Scholar
  34. 34.
    Corma A, García H, Navarro MT, Palomares EJ, Rey F. Chem Mater, 2000, 12: 3068–3072CrossRefGoogle Scholar
  35. 35.
    Tanev PT, Chibwe M, Pinnavaia TJ. Nature, 1994, 368: 321–323CrossRefGoogle Scholar
  36. 36.
    Li R, Cao A, Zhang Y, Li G, Jiang F, Li S, Chen D, Wang C, Ge J, Shu C. ACS Appl Mater Interfaces, 2014, 6: 20574–20578CrossRefGoogle Scholar
  37. 37.
    Wen Z, Ci S, Hou Y, Chen J. Angew Chem Int Ed, 2014, 53: 6496–6500CrossRefGoogle Scholar
  38. 38.
    Yu J, Hai Y, Cheng B. J Phys Chem C, 2011, 115: 4953–4958CrossRefGoogle Scholar
  39. 39.
    Molla RA, Iqubal MA, Ghosh K, Islam SM. Green Chem, 2016, 18: 4649–4656CrossRefGoogle Scholar
  40. 40.
    Yang Z, Yu B, Zhang H, Zhao Y, Chen Y, Ma Z, Ji G, Gao X, Han B, Liu Z. ACS Catal, 2016, 6: 1268–1273CrossRefGoogle Scholar
  41. 41.
    Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS. Energy Environ Sci, 2012, 5: 7936–7942CrossRefGoogle Scholar
  42. 42.
    Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L. J Am Chem Soc, 2012, 134: 15–18CrossRefGoogle Scholar
  43. 43.
    Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J. J Mater Chem, 2011, 21: 8038–8044CrossRefGoogle Scholar
  44. 44.
    Perini L, Durante C, Favaro M, Agnoli S, Granozzi G, Gennaro A. Appl Catal B-Environ, 2014, 144: 300–307CrossRefGoogle Scholar
  45. 45.
    He DP, Jiang YL, Lv HF, Pan M, Mu SC. Appl Catal B-Environ, 2013, 132: 379–388CrossRefGoogle Scholar
  46. 46.
    Wertheim GK, Dicenzo SB. Phys Rev B, 1988, 37: 844–847CrossRefGoogle Scholar
  47. 47.
    Creutz C, Chou MH. J Am Chem Soc, 2009, 131: 2794–2795CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoying Luo
    • 1
    • 2
  • Hongye Zhang
    • 1
  • Zhengang Ke
    • 1
    • 2
  • Cailing Wu
    • 1
    • 2
  • Shien Guo
    • 1
    • 2
  • Yunyan Wu
    • 1
    • 2
  • Bo Yu
    • 1
  • Zhimin Liu
    • 1
    • 2
  1. 1.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations