Specific detection and effective inhibition of a single bacterial species in situ using peptide mineralized Au cluster probes

  • Xiangchun Zhang
  • Li Liu
  • Ru Liu
  • Jing Wang
  • Xuhu Hu
  • Qing Yuan
  • Juanjuan Guo
  • Gengmei Xing
  • Yuliang Zhao
  • Xueyun Gao
Articles

Abstract

Increasingly serious microbial infections call for the development of new simpler methods for the precise diagnosis and specific inhibition of such pathogens. In this work, a peptide mineralized Au cluster probe was applied as a new simplified strategy to both recognize and inhibit a single bacteria species of Staphylococcus aureus (S. aureus) simultaneously. The probes are composed of peptides and Au clusters. Moreover, the peptides specifically target S. aureus cells and the Au clusters provide fluorescent imaging and have an antibacterial effect. These new probes enable the simultaneous specific detection and effective destruction S. aureus cells in situ.

Keywords

Au cluster probes single bacteria species S. aureus specific detection effective inhibition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21727817, 21390414, 21425522, 51571185) and Beijing Science and Technology Commission Special Project for Frontier Technology in Life Sciences (Z171100000417008).

Supplementary material

11426_2017_9206_MOESM1_ESM.pdf (1.3 mb)
Specific Detection and Effective Inhibition of a Single Bacterial Species in situ Using Peptide Mineralized Au Cluster Probes

References

  1. 1.
    van Oosten M, Schäfer T, Gazendam JAC, Ohlsen K, Tsompanidou E, de Goffau MC, Harmsen HJM, Crane LMA, Lim E, Francis KP, Cheung L, Olive M, Ntziachristos V, van Dijl JM, van Dam GM. Nat Commun, 2013, 4: 2584Google Scholar
  2. 2.
    Levin BR, Antia R. Science, 2001, 292: 1112–1115CrossRefGoogle Scholar
  3. 3.
    Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P. Nature, 2008, 451: 990–993CrossRefGoogle Scholar
  4. 4.
    Su F, Endo Y, Saiki H, Xing XH, Ohmura N. Biosens Bioelectron, 2007, 22: 2500–2507CrossRefGoogle Scholar
  5. 5.
    Stokstad E. Science, 2006, 313: 1217CrossRefGoogle Scholar
  6. 6.
    Yang L, Li Y. Analyst, 2006, 131: 394–401CrossRefGoogle Scholar
  7. 7.
    Gu H, Ho PL, Tsang KWT, Wang L, Xu B. J Am Chem Soc, 2003, 125: 15702–15703CrossRefGoogle Scholar
  8. 8.
    Picard FJ, Bergeron MG. Drug Discovery Today, 2002, 7: 1092–1101CrossRefGoogle Scholar
  9. 9.
    Sandhu S, Schouten JA, Thompson J, Davis M, Bugg TDH. Analyst, 2012, 137: 1130–1136CrossRefGoogle Scholar
  10. 10.
    Sung YJ, Suk HJ, Sung HY, Li T, Poo H, Kim MG. Biosens Bioelectron, 2013, 43: 432–439CrossRefGoogle Scholar
  11. 11.
    Wu S, Duan N, Shi Z, Fang CC, Wang Z. Anal Chem, 2014, 86: 3100–3107CrossRefGoogle Scholar
  12. 12.
    Kavruk M, Celikbicak O, Ozalp VC, Borsa BA, Hernandez FJ, Bayramoglu G, Salih B, Arica MY. Chem Commun, 2015, 51: 8492–8495CrossRefGoogle Scholar
  13. 13.
    Chung HJ, Reiner T, Budin G, Min C, Liong M, Issadore D, Lee H, Weissleder R. ACS Nano, 2011, 5: 8834–8841CrossRefGoogle Scholar
  14. 14.
    Cheng D, Yu M, Fu F, Han W, Li G, Xie J, Song Y, Swihart MT, Song E. Anal Chem, 2016, 88: 820–825CrossRefGoogle Scholar
  15. 15.
    Xing B, Yu CW, Chow KH, Ho PL, Fu D, Xu B. J Am Chem Soc, 2002, 124: 14846–14847CrossRefGoogle Scholar
  16. 16.
    Ning X, Lee S, Wang Z, Kim D, Stubblefield B, Gilbert E, Murthy N. Nat Mater, 2011, 10: 602–607CrossRefGoogle Scholar
  17. 17.
    Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC. Science, 2003, 302: 1569–1571CrossRefGoogle Scholar
  18. 18.
    Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K. Nature, 2015, 517: 455–459CrossRefGoogle Scholar
  19. 19.
    Yin W, Yu J, Lv F, Yan L, Zheng LR, Gu Z, Zhao Y. ACS Nano, 2016, 10: 11000–11011CrossRefGoogle Scholar
  20. 20.
    Chen WY, Lin JY, Chen WJ, Luo L, Wei-Guang Diau E, Chen YC. Nanomedicine, 2010, 5: 755–764CrossRefGoogle Scholar
  21. 21.
    Li LL, Xu JH, Qi GB, Zhao X, Yu F, Wang H. ACS Nano, 2014, 8: 4975–4983CrossRefGoogle Scholar
  22. 22.
    Gao WW, Rasheed S, Tangadanchu VKR, Sun Y, Peng XM, Cheng Y, Zhang FX, Lin JM, Zhou CH. Sci China Chem, 2017, 60: 769–785CrossRefGoogle Scholar
  23. 23.
    Chai Q, Wu Q, Liu T, Tan L, Fu C, Ren X, Yang Y, Meng X. Sci Bull, 2017, 62: 1207–1215CrossRefGoogle Scholar
  24. 24.
    Tao WX, Zhu MH, Deng ZX, Sun YH. Sci China Chem, 2013, 56: 1364–1371CrossRefGoogle Scholar
  25. 25.
    Liu L, Yang K, Zhang L, Zhang Y. Sci Bull, 2016, 61: 1890–1891CrossRefGoogle Scholar
  26. 26.
    Tarpley RJ. Science, 2014, 343: 136–137CrossRefGoogle Scholar
  27. 27.
    Levy SB, Marshall B. Nat Med, 2004, 10: S122–S129CrossRefGoogle Scholar
  28. 28.
    Smith AW. Adv Drug Deliver Rev, 2005, 57: 1539–1550CrossRefGoogle Scholar
  29. 29.
    Cantelli A, Battistelli G, Guidetti G, Manzi J, Di Giosia M, Montalti M. Dyes Pigments, 2016, 135: 64–79CrossRefGoogle Scholar
  30. 30.
    Polavarapu L, Manna M, Xu QH. Nanoscale, 2011, 3: 429–434CrossRefGoogle Scholar
  31. 31.
    Yuan Q, Wang Y, Zhao L, Liu R, Gao F, Gao L, Gao X. Nanoscale, 2016, 8: 12095–12104CrossRefGoogle Scholar
  32. 32.
    Mishra D, Aldeek F, Lochner E, Palui G, Zeng B, Mackowski S, Mattoussi H. Langmuir, 2016, 32: 6445–6458CrossRefGoogle Scholar
  33. 33.
    Wang Y, Xu C, Zhai J, Gao F, Liu R, Gao L, Zhao Y, Chai Z, Gao X. Anal Chem, 2015, 87: 343–345CrossRefGoogle Scholar
  34. 34.
    Zhai J, Zhao L, Zheng L, Gao F, Gao L, Liu R, Wang Y, Gao X. ACS Omega, 2017, 2: 276–282CrossRefGoogle Scholar
  35. 35.
    Zhang L, Wang E. Nano Today, 2014, 9: 132–157CrossRefGoogle Scholar
  36. 36.
    Zhai J, Wang Y, Xu C, Zheng L, Wang M, Feng W, Gao L, Zhao L, Liu R, Gao F, Zhao Y, Chai Z, Gao X. Anal Chem, 2015, 87: 2546–2549CrossRefGoogle Scholar
  37. 37.
    Liu R, Wang Y, Yuan Q, An D, Li J, Gao X. Chem Commun, 2014, 50: 10687–10690CrossRefGoogle Scholar
  38. 38.
    Boda SK, Broda J, Schiefer F, Weber-Heynemann J, Hoss M, Simon U, Basu B, Jahnen-Dechent W. Small, 2015, 11: 3183–3193CrossRefGoogle Scholar
  39. 39.
    Zheng K, Setyawati MI, Leong DT, Xie J. ACS Nano, 2017, 11: 6904–6910CrossRefGoogle Scholar
  40. 40.
    Wang Y, Cui Y, Liu R, Gao F, Gao L, Gao X. Sci China Chem, 2015, 58: 819–824CrossRefGoogle Scholar
  41. 41.
    Swartz MN. Proc Natl Acad Sci USA, 1994, 91: 2420–2427CrossRefGoogle Scholar
  42. 42.
    Wang Y, Cui Y, Zhao Y, Liu R, Sun Z, Li W, Gao X. Chem Commun, 2012, 48: 871–873CrossRefGoogle Scholar
  43. 43.
    Rao SS, Mohan KVK, Gao Y, Atreya CD. Microbiol Res, 2013, 168: 106–112CrossRefGoogle Scholar
  44. 44.
    Chen H, Wang B, Gao D, Guan M, Zheng L, Ouyang H, Chai Z, Zhao Y, Feng W. Small, 2013, 9: 2735–2746CrossRefGoogle Scholar
  45. 45.
    Khandelwal P, Singh DK, Sadhu S, Poddar P. Nanoscale, 2015, 7: 19985–20002CrossRefGoogle Scholar
  46. 46.
    Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. Cell, 2007, 130: 797–810CrossRefGoogle Scholar
  47. 47.
    Zhao R, Wang H, Ji T, Anderson G, Nie G, Zhao Y. Sci Bull, 2015, 60: 216–226CrossRefGoogle Scholar
  48. 48.
    Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC. Science, 2012, 336: 315–319CrossRefGoogle Scholar
  49. 49.
    Gao L, Liu R, Gao F, Wang Y, Jiang X, Gao X. ACS Nano, 2014, 8: 7260–7271CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiangchun Zhang
    • 1
    • 3
  • Li Liu
    • 1
  • Ru Liu
    • 1
  • Jing Wang
    • 1
  • Xuhu Hu
    • 1
  • Qing Yuan
    • 1
  • Juanjuan Guo
    • 1
  • Gengmei Xing
    • 1
  • Yuliang Zhao
    • 1
  • Xueyun Gao
    • 1
    • 2
  1. 1.CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Chemistry and Chemical EngineeringBeijing University of TechnologyBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations