Advertisement

Science China Chemistry

, Volume 61, Issue 5, pp 592–597 | Cite as

Three-dimensional nitrogen and phosphorous Co-doped graphene aerogel electrocatalysts for efficient oxygen reduction reaction

Articles

Abstract

The development of efficient electrocatalysts for oxygen reduction reaction (ORR) is of importance for fuel cells and metal-air batteries. Herein, three-dimensional nitrogen and phosphorous co-doped graphene aerogel (NPGA) was prepared via the pyrolysis of polyaniline (PANi) coated graphene oxide aerogel synthesized by oxidative polymerization of aniline on graphene oxide (GO) sheets in the presence of phytic acid. The uniform coating of PANi thin layer on the surface of GO sheets enables the formation of highly porous composite aerogel of PANi and GO. The subsequent thermal treatment is able to prepare the porous NPGA due to the carbonization of PANi and phytic acid as nitrogen and phosphorous resources. When used as electrocatalysts, the as-prepared NPGA electrocatalysts exhibited good catalytic activity to ORR via an efficient four-electron pathway with good stability, benefiting from the highly porous structure and the heteroatom co-doping. More importantly, Zn-air batteries operated in ambient air have been fabricated by coupling a Zn plate with the NPGA electrocatalyst in an air electrode, demonstrating the maximal power density as high as ∼260 W/g and a good long-term stability with slightly potential decay for over 450 h. The facile method for preparing efficient carbon based ORR electrocatalysts would generate other potential applications including fuel cells and others.

Keywords

graphene aerogel heteroatom doping oxygen reduction reaction Zn-air battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Natural Scientific Foundation of China (21503116), the Open Funds of the State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (oic-201601008), the Qingdao Basic & Applied Research Project (15-9-1-56-jch), Taishan Scholars Program of Shandong Province (tsqn20161004) and the Youth 1000 Talent Program of China.

Supplementary material

11426_2017_9191_MOESM1_ESM.pdf (273 kb)
Three-dimensional Nitrogen and Phosphorous Co-doped Graphene Aerogel Electrocatalysts for Efficient Oxygen Reduction Reaction

References

  1. 1.
    Li Y, Dai H. Chem Soc Rev, 2014, 43: 5257–5275CrossRefGoogle Scholar
  2. 2.
    Liu X, Dai L. Nat Rev Mater, 2016, 1: 16064CrossRefGoogle Scholar
  3. 3.
    Zhang J, Xia Z, Dai L. Sci Adv, 2015, 1: e1500564CrossRefGoogle Scholar
  4. 4.
    Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z. Adv Mater, 2017, 29: 1604685CrossRefGoogle Scholar
  5. 5.
    Ge X, Sumboja A, Wuu D, An T, Li B, Goh FWT, Hor TSA, Zong Y, Liu Z. ACS Catal, 2015, 5: 4643–4667CrossRefGoogle Scholar
  6. 6.
    Guo S, Zhang S, Sun S. Angew Chem Int Ed, 2013, 52: 8526–8544CrossRefGoogle Scholar
  7. 7.
    Bu L, Zhang N, Guo S, Zhang X, Li J, Yao J, Wu T, Lu G, Ma JY, Su D, Huang X. Science, 2016, 354: 1410–1414CrossRefGoogle Scholar
  8. 8.
    Jiang K, Zhao D, Guo S, Zhang X, Zhu X, Guo J, Lu G, Huang X. Sci Adv, 2017, 3: e1601705CrossRefGoogle Scholar
  9. 9.
    Li R, Zhang D, Zhou Y, Wang X, Guo G. Sci China Chem, 2016, 59: 746–751CrossRefGoogle Scholar
  10. 10.
    Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z. Science, 2015, 347: 970–974CrossRefGoogle Scholar
  11. 11.
    Wu S, Zhu Y, Huo Y, Luo Y, Zhang L, Wan Y, Nan B, Cao L, Wang Z, Li M, Yang M, Cheng H, Lu Z. Sci China Mater, 2017, 60: 654–663CrossRefGoogle Scholar
  12. 12.
    Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323: 760–764CrossRefGoogle Scholar
  13. 13.
    Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. J Am Chem Soc, 2014, 136: 4394–4403CrossRefGoogle Scholar
  14. 14.
    Cao L, Yang M, Lu Z, Pan H. Sci China Mater, 2017, 60: 739–746CrossRefGoogle Scholar
  15. 15.
    Zhao Y, Yang L, Chen S, Wang X, Ma Y, Wu Q, Jiang Y, Qian W, Hu Z. J Am Chem Soc, 2013, 135: 1201–1204CrossRefGoogle Scholar
  16. 16.
    El-Sawy AM, Mosa IM, Su D, Guild CJ, Khalid S, Joesten R, Rusling JF, Suib SL. Adv Energy Mater, 2016, 6: 1501966CrossRefGoogle Scholar
  17. 17.
    Zhang J, Zhao Z, Xia Z, Dai L. Nat Nanotech, 2015, 10: 444–452CrossRefGoogle Scholar
  18. 18.
    Zhang J, Dai L. ACS Catal, 2015, 5: 7244–7253CrossRefGoogle Scholar
  19. 19.
    Zhang J, Qu L, Shi G, Liu J, Chen J, Dai L. Angew Chem Int Ed, 2016, 55: 2230–2234CrossRefGoogle Scholar
  20. 20.
    Stankovich S, Piner RD, Chen X, Wu N, Nguyen SBT, Ruoff RS. J Mater Chem, 2006, 16: 155–158CrossRefGoogle Scholar
  21. 21.
    Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Science, 2016, 351: 361–365CrossRefGoogle Scholar
  22. 22.
    Li R, Wei Z, Gou X. ACS Catal, 2015, 5: 4133–4142CrossRefGoogle Scholar
  23. 23.
    Chen S, Wang L, Wu Q, Li X, Zhao Y, Lai H, Yang L, Sun T, Li Y, Wang X, Hu Z. Sci China Chem, 2015, 58: 180–186CrossRefGoogle Scholar
  24. 24.
    Yu X, Zhang M, Chen J, Li Y, Shi G. Adv Energy Mater, 2016, 6: 1501492CrossRefGoogle Scholar
  25. 25.
    Li L, Chen C, Yu A. Sci China Chem, 2017, 60: 1402–1412CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShandong UniversityJinanChina
  2. 2.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations