Science China Chemistry

, Volume 61, Issue 4, pp 412–417 | Cite as

Semi-synthesis of disulfide-linked branched tri-ubiquitin mimics

  • Yanyan Si
  • Lujun Liang
  • Shan Tang
  • Yunkun Qi
  • Yong Huang
  • Lei Liu


Ubiquitin (Ub) chain isopeptide bond mimics are useful molecules for biochemical and biophysical studies. Herein, we report the semi-synthesis of the disulfide-linked K11/K48-branched tri-Ub (Ub311/48(S–S)), the first example of an isopeptide mimic for the branched Ub chains, which have recently emerged as an interesting category of Ub modifications. Our strategy comprised the E1-dependent synthesis of the Ub conjugate of aminoethanethiol, followed by disulfide formation with Ub(K11C, K48C). The structure of the synthetic isopeptide bond mimics was verified by the crystal structure of Ub311/48(S–S). Deubiquitination and pulldown assays indicated that the synthetic Ub311/48(S–S) could be hydrolyzed by linkage-specific deubiquitinases (K11-specific Cezanne and K48-specific OTUB1), and recognized by proteasomal ubiquitin receptor S5a.


ubiquitin chain isopeptide bond mimics disulfide-directed strategy branched Ub chains crystal structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key R&D Program of China (2017YFA0505200), the National Natural Science Foundation of China (91753205, 21532004, 21761142008), and the Program of Introducing Talents of Discipline to Universities of China (B16028).


  1. 1.
    Hershko A, Ciechanover A. Annu Rev Biochem, 1998, 67: 425–479CrossRefGoogle Scholar
  2. 2.
    Kulathu Y, Komander D. Nat Rev Mol Cell Biol, 2012, 13: 508–523CrossRefGoogle Scholar
  3. 3.
    Emmerich CH, Ordureau A, Strickson S, Arthur JSC, Pedrioli PGA, Komander D, Cohen P. Proc Natl Acad Sci USA, 2013, 110: 15247–15252CrossRefGoogle Scholar
  4. 4.
    Swatek KN, Komander D. Cell Res, 2016, 26: 399–422CrossRefGoogle Scholar
  5. 5.
    Kim HT, Kim KP, Lledias F, Kisselev AF, Scaglione KM, Skowyra D, Gygi SP, Goldberg AL. J Biol Chem, 2007, 282: 17375–17386CrossRefGoogle Scholar
  6. 6.
    Meyer HJ, Rape M. Cell, 2014, 157: 910–921CrossRefGoogle Scholar
  7. 7.
    Ohtake F, Saeki Y, Ishido S, Kanno J, Tanaka K. Mol Cell, 2016, 64: 251–266CrossRefGoogle Scholar
  8. 8.
    Liu C, Liu W, Ye Y, Li W. Nat Commun, 2017, 8: 14274–14289CrossRefGoogle Scholar
  9. 9.
    Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP. Nat Biotech, 2003, 21: 921–926CrossRefGoogle Scholar
  10. 10.
    Hemantha HP, Brik A. Bioorg Med Chem, 2013, 21: 3411–3420CrossRefGoogle Scholar
  11. 11.
    Dixon EK, Castañeda CA, Kashyap TR, Wang Y, Fushman D. Bioorg Med Chem, 2013, 21: 3421–3429CrossRefGoogle Scholar
  12. 12.
    Virdee S, Ye Y, Nguyen DP, Komander D, Chin JW. Nat Chem Biol, 2010, 6: 750–757CrossRefGoogle Scholar
  13. 13.
    El Oualid F, Merkx R, Ekkebus R, Hameed DS, Smit JJ, de Jong A, Hilkmann H, Sixma TK, Ovaa H. Angew Chem Int Ed, 2010, 49: 10149–10153CrossRefGoogle Scholar
  14. 14.
    Kumar KSA, Spasser L, Erlich LA, Bavikar SN, Brik A. Angew Chem Int Ed, 2010, 49: 9126–9131CrossRefGoogle Scholar
  15. 15.
    Kumar KSA, Bavikar SN, Spasser L, Moyal T, Ohayon S, Brik A. Angew Chem Int Ed, 2011, 50: 6137–6141CrossRefGoogle Scholar
  16. 16.
    Pan M, Gao S, Zheng Y, Tan X, Lan H, Tan X, Sun D, Lu L, Wang T, Zheng Q, Huang Y, Wang J, Liu L. J Am Chem Soc, 2016, 138: 7429–7435CrossRefGoogle Scholar
  17. 17.
    Gao S, Pan M, Zheng Y, Huang Y, Zheng Q, Sun D, Lu L, Tan X, Tan X, Lan H, Wang J, Wang T, Wang J, Liu L. J Am Chem Soc, 2016, 138: 14497–14502CrossRefGoogle Scholar
  18. 18.
    Tang S, Liang LJ, Si YY, Gao S, Wang JX, Liang J, Mei Z, Zheng JS, Liu L. Angew Chem Int Ed, 2017, 56: 13333–13337CrossRefGoogle Scholar
  19. 19.
    Meledin R, Mali SM, Singh SK, Brik A. Org Biomol Chem, 2016, 14: 4817–4823CrossRefGoogle Scholar
  20. 20.
    Huang Y, Liu L. Sci China Chem, 2015, 58: 1779–1781CrossRefGoogle Scholar
  21. 21.
    Lee CL, Li X. Sci China Chem, 2016, 59: 1061–1064CrossRefGoogle Scholar
  22. 22.
    Huang YC, Fang GM, Liu L. Natl Sci Rev, 2016, 3: 107–116CrossRefGoogle Scholar
  23. 23.
    Li H, Dong S. Sci China Chem, 2017, 60: 201–213CrossRefGoogle Scholar
  24. 24.
    He Q, Li J, Qi Y, Wang Z, Huang Y, Liu L. Sci China Chem, 2017, 60: 621–627CrossRefGoogle Scholar
  25. 25.
    Lewis YE, Abeywardana T, Lin YH, Galesic A, Pratt MR. ACS Chem Biol, 2016, 11: 931–942CrossRefGoogle Scholar
  26. 26.
    Chatterjee C, McGinty RK, Fierz B, Muir TW. Nat Chem Biol, 2010, 6: 267–269CrossRefGoogle Scholar
  27. 27.
    Chen J, Ai Y, Wang J, Haracska L, Zhuang Z. Nat Chem Biol, 2010, 6: 270–272CrossRefGoogle Scholar
  28. 28.
    Hemantha HP, Bavikar SN, Herman-Bachinsky Y, Haj-Yahya N, Bondalapati S, Ciechanover A, Brik A. J Am Chem Soc, 2014, 136: 2665–2673CrossRefGoogle Scholar
  29. 29.
    Holt MT, David Y, Pollock S, Tang Z, Jeon J, Kim J, Roeder RG, Muir TW. Proc Natl Acad Sci USA, 2015, 112: 10365–10370CrossRefGoogle Scholar
  30. 30.
    Debelouchina GT, Gerecht K, Muir TW. Nat Chem Biol, 2017, 13: 105–110CrossRefGoogle Scholar
  31. 31.
    Shanmugham A, Fish A, Luna-Vargas MPA, Faesen AC, El Oualid F, Sixma TK, Ovaa H. J Am Chem Soc, 2010, 132: 8834–8835CrossRefGoogle Scholar
  32. 32.
    Singh SK, Sahu I, Mali SM, Hemantha HP, Kleifeld O, Glickman MH, Brik A. J Am Chem Soc, 2016, 138: 16004–16015CrossRefGoogle Scholar
  33. 33.
    Mali SM, Singh SK, Eid E, Brik A. J Am Chem Soc, 2017, 139: 4971–4986CrossRefGoogle Scholar
  34. 34.
    Wang XA, Kurra Y, Huang Y, Lee YJ, Liu WR. ChemBioChem, 2014, 15: 37–41CrossRefGoogle Scholar
  35. 35.
    Dong KC, Helgason E, Yu C, Phu L, Arnott DP, Bosanac I, Compaan DM, Huang OW, Fedorova AV, Kirkpatrick DS, Hymowitz SG, Dueber EC. Structure, 2011, 19: 1053–1063CrossRefGoogle Scholar
  36. 36.
    Bremm A, Freund SMV, Komander D. Nat Struct Mol Biol, 2010, 17: 939–947CrossRefGoogle Scholar
  37. 37.
    Mevissen TET, Kulathu Y, Mulder MPC, Geurink PP, Maslen SL, Gersch M, Elliott PR, Burke JE, van Tol BDM, Akutsu M, El Oualid F, Kawasaki M, Freund SMV, Ovaa H, Komander D. Nature, 2016, 538: 402–405CrossRefGoogle Scholar
  38. 38.
    Wang T, Yin L, Cooper EM, Lai MY, Dickey S, Pickart CM, Fushman D, Wilkinson KD, Cohen RE, Wolberger C. J Mol Biol, 2009, 386: 1011–1023CrossRefGoogle Scholar
  39. 39.
    Edelmann MJ, Iphöfer A, Akutsu M, Altun M, di Gleria K, Kramer HB, Fiebiger E, Dhe-Paganon S, Kessler BM. Biochem J, 2009, 418: 379–390CrossRefGoogle Scholar
  40. 40.
    Mevissen TET, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, Arnaudo N, Ekkebus R, Kulathu Y, Wauer T, El Oualid F, Freund SMV, Ovaa H, Komander D. Cell, 2013, 154: 169–184CrossRefGoogle Scholar
  41. 41.
    Mevissen TET, Komander D. Annu Rev Biochem, 2017, 86: 159–192CrossRefGoogle Scholar
  42. 42.
    Zhang N, Wang Q, Ehlinger A, Randles L, Lary JW, Kang Y, Haririnia A, Storaska AJ, Cole JL, Fushman D, Walters KJ. Mol Cell, 2009, 35: 280–290CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yanyan Si
    • 1
    • 2
  • Lujun Liang
    • 2
  • Shan Tang
    • 2
  • Yunkun Qi
    • 2
  • Yong Huang
    • 1
  • Lei Liu
    • 2
  1. 1.Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking UniversityShenzhen Graduate SchoolShenzhenChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations