Removal of toxic metal ions using chitosan coated carbon nanotube composites for supercapacitors
- 3 Downloads
Abstract
Environmental pollution and energy crisis are two major global challenges to human beings. Recovering energy from wastewater is considered to be one of the effective approaches to address these two issues synchronously. As the main pollutants in wastewater, toxic heavy metal ions are the potential candidates for energy storage devices with pseudocapacitive behaviors. In this study, toxic metal ions of Cr(VI) and Cu(II) are removed efficiently by chitosan coated oxygen-containing functional carbon nanotubes, and the corresponding equilibrium adsorption capacity is 142.1 and 123.7 mg g−1. Followed by carbonization of metal ions-adsorbed adsorbents, Cu- and CrN-loaded carbon composites can be obtained. Electrochemical measurements show that the supercapacitor electrodes based on Cu- and CrN-loaded carbon composites have specific capacitance of 144.9 and 114.9 F g−1 at 2 mV s−1, with superior electrochemical properties to pure chitosan coated carbon nanotubes after carbonization. This work demonstrates a new strategy for the resource-utilization of other heavy metal ions for energy devices, and also provides a new way to turn environmental pollutants into clean energy.
Keywords
heavy metal ions adsorption chitosan coated carbon nanotube supercapacitorPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
This work was supported by the National Natural Science Foundation of China (51602182, 21535004, 21390411) and Shandong Provincial Natural Science Foundation (ZR2016EMQ02, ZR2016BP07).
Supplementary material
References
- 1.Sun H, Mei L, Liang J, Zhao Z, Lee C, Fei H, Ding M, Lau J, Li M, Wang C, Xu X, Hao G, Papandrea B, Shakir I, Dunn B, Huang Y, Duan X. Science, 2017, 356: 599–604CrossRefGoogle Scholar
- 2.Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M. Energy Environ Sci, 2016, 9: 102–106CrossRefGoogle Scholar
- 3.Wang RT, Lang JW, Yan XB. Sci China Chem, 2014, 57: 1570–1578CrossRefGoogle Scholar
- 4.Faraji S, Ani FN. Renew Sustain Energy Rev, 2015, 42: 823–834CrossRefGoogle Scholar
- 5.Wang X, Kong D, Wang B, Song Y, Zhi L. Sci China Chem, 2016, 59: 713–718CrossRefGoogle Scholar
- 6.Kim HK, Bak SM, Lee SW, Kim MS, Park B, Lee SC, Choi YJ, Jun SC, Han JT, Nam KW, Chung KY, Wang J, Zhou J, Yang XQ, Roh KC, Kim KB. Energy Environ Sci, 2016, 9: 1270–1281CrossRefGoogle Scholar
- 7.Boukhalfa S, Evanoff K, Yushin G. Energy Environ Sci, 2012, 5: 6872–6879CrossRefGoogle Scholar
- 8.Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Xue Q, Xie X, Zhi C. Nat Commun, 2015, 6: 10310CrossRefGoogle Scholar
- 9.Sun J, Li W, Zhang B, Li G, Jiang L, Chen Z, Zou R, Hu J. Nano Energy, 2014, 4: 56–64CrossRefGoogle Scholar
- 10.Hao P, Cui G, Shi X, Xie J, Xia X, Sang Y, Wong CP, Liu H, Tang B. Chin J Chem, 2017, 35: 699–706CrossRefGoogle Scholar
- 11.Yu Z, Tetard L, Zhai L, Thomas J. Energy Environ Sci, 2015, 8: 702–730CrossRefGoogle Scholar
- 12.Zhang Z, Ma W, Xu B, Zhou X, Wang C, Xie Z, Liu L, Ma Y. Sci China Chem, 2018, 61: 192–199CrossRefGoogle Scholar
- 13.Acerce M, Voiry D, Chhowalla M. Nat Nanotech, 2015, 10: 313–318CrossRefGoogle Scholar
- 14.Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P. Chem Soc Rev, 2015, 44: 1777–1790CrossRefGoogle Scholar
- 15.Li X, Xiao X, Li Q, Wei J, Xue H, Pang H. Inorg Chem Front, 2018, 5: 11–28CrossRefGoogle Scholar
- 16.Zhang WJ, Huang KJ. Inorg Chem Front, 2017, 4: 1602–1620CrossRefGoogle Scholar
- 17.Zhang F, Liu T, Li M, Yu M, Luo Y, Tong Y, Li Y. Nano Lett, 2017, 17: 3097–3104CrossRefGoogle Scholar
- 18.Nyström G, Marais A, Karabulut E, Wågberg L, Cui Y, Hamedi MM. Nat Commun, 2015, 6: 7259CrossRefGoogle Scholar
- 19.Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y. Nat Nanotech, 2014, 9: 555–562CrossRefGoogle Scholar
- 20.Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z. Carbon, 2014, 67: 119–127CrossRefGoogle Scholar
- 21.Hao P, Zhao Z, Leng Y, Tian J, Sang Y, Boughton RI, Wong CP, Liu H, Yang B. Nano Energy, 2015, 15: 9–23CrossRefGoogle Scholar
- 22.Hao P, Tian J, Sang Y, Tuan CC, Cui G, Shi X, Wong CP, Tang B, Liu H. Nanoscale, 2016, 8: 16292–16301CrossRefGoogle Scholar
- 23.Gomez J, Kalu EE. J Power Sources, 2013, 230: 218–224CrossRefGoogle Scholar
- 24.Ma W, Chen S, Yang S, Chen W, Weng W, Cheng Y, Zhu M. Carbon, 2017, 113: 151–158CrossRefGoogle Scholar
- 25.Faraji S, Ani FN. J Power Sources, 2014, 263: 338–360CrossRefGoogle Scholar
- 26.Chen LY, Hou Y, Kang JL, Hirata A, Chen MW. J Mater Chem A, 2014, 2: 8448–8455CrossRefGoogle Scholar
- 27.Du W, Xu X, Zhang D, Lu Q, Gao F. Sci China Chem, 2015, 58: 627–633CrossRefGoogle Scholar
- 28.Ge F, Li MM, Ye H, Zhao BX. J Hazard Mater, 2012, 211-212: 366–372CrossRefGoogle Scholar
- 29.Rapti S, Pournara A, Sarma D, Papadas IT, Armatas GS, Hassan YS, Alkordi MH, Kanatzidis MG, Manos MJ. Inorg Chem Front, 2016, 3: 635–644CrossRefGoogle Scholar
- 30.Badruddoza AZM, Shawon ZBZ, Tay WJD, Hidajat K, Uddin MS. Carbohydrate Polym, 2013, 91: 322–332CrossRefGoogle Scholar
- 31.Demirbas A. J Hazard Mater, 2008, 157: 220–229CrossRefGoogle Scholar
- 32.Yu D, Wang H, Yang J, Niu Z, Lu H, Yang Y, Cheng L, Guo L. ACS Appl Mater Interfaces, 2017, 9: 21298–21306CrossRefGoogle Scholar
- 33.Fu F, Dionysiou DD, Liu H. J Hazard Mater, 2014, 267: 194–205CrossRefGoogle Scholar
- 34.Homhuan NB, Imwiset KJ, Bureekaew S, Ogawa M. Clay Sci, 2017, 21: 21–28Google Scholar
- 35.Tahmasebi E, Yamini Y. Microchim Acta, 2014, 181: 543–551CrossRefGoogle Scholar
- 36.Zhou Y, Zhou W, Hou D, Li G, Wan J, Feng C, Tang Z, Chen S. Small, 2016, 12: 2768–2774CrossRefGoogle Scholar
- 37.Chen Y, Zhang W, Yang S, Hobiny A, Alsaedi A, Wang X. Sci China Chem, 2016, 59: 412–419CrossRefGoogle Scholar
- 38.Li Y, Zhang J, Xu C, Zhou Y. Sci China Chem, 2016, 59: 95–105CrossRefGoogle Scholar
- 39.Fan L, Zhang N, Sun K. RSC Adv, 2014, 4: 21419CrossRefGoogle Scholar
- 40.Hu J, Tao P, Wang S, Liu Y, Tang Y, Zhong H, Lu Z. J Mater Chem A, 2013, 1: 6558CrossRefGoogle Scholar
- 41.Tao P, Hu J, Wang W, Wang S, Li M, Zhong H, Tang Y, Lu Z. RSC Adv, 2014, 4: 13518CrossRefGoogle Scholar
- 42.Cho HH, Wepasnick K, Smith BA, Bangash FK, Fairbrother DH, Ball WP. Langmuir, 2010, 26: 967–981CrossRefGoogle Scholar
- 43.Lee J, Lee DM, Kim YK, Jeong HS, Kim SM. Small, 2017, 13: 1701131CrossRefGoogle Scholar
- 44.Kolhe P, Kannan RM. Biomacromolecules, 2003, 4: 173–180CrossRefGoogle Scholar
- 45.Gu X, Yang Y, Hu Y, Hu M, Wang C. ACS Sustain Chem Eng, 2015, 3: 1056–1065CrossRefGoogle Scholar
- 46.Wei B, Liang H, Zhang D, Wu Z, Qi Z, Wang Z. J Mater Chem A, 2017, 5: 2844–2851CrossRefGoogle Scholar
- 47.Pandey K, Yadav P, Mukhopadhyay I. Phys Chem Chem Phys, 2015, 17: 878–887CrossRefGoogle Scholar
- 48.Li Q, Li K, Sun C, Li Y. J Electroanal Chem, 2007, 611: 43–50CrossRefGoogle Scholar
- 49.Wang Y, Zhang Y, Pei L, Ying D, Xu X, Zhao L, Jia J, Cao X. Sci Rep, 2017, 7: 41523CrossRefGoogle Scholar