Science China Chemistry

, Volume 61, Issue 7, pp 797–805 | Cite as

Removal of toxic metal ions using chitosan coated carbon nanotube composites for supercapacitors

  • Pin Hao
  • Xiaoye Ma
  • Junfeng Xie
  • Fengcai Lei
  • Liyi Li
  • Wenqian Zhu
  • Xin Cheng
  • Guanwei Cui
  • Bo Tang


Environmental pollution and energy crisis are two major global challenges to human beings. Recovering energy from wastewater is considered to be one of the effective approaches to address these two issues synchronously. As the main pollutants in wastewater, toxic heavy metal ions are the potential candidates for energy storage devices with pseudocapacitive behaviors. In this study, toxic metal ions of Cr(VI) and Cu(II) are removed efficiently by chitosan coated oxygen-containing functional carbon nanotubes, and the corresponding equilibrium adsorption capacity is 142.1 and 123.7 mg g−1. Followed by carbonization of metal ions-adsorbed adsorbents, Cu- and CrN-loaded carbon composites can be obtained. Electrochemical measurements show that the supercapacitor electrodes based on Cu- and CrN-loaded carbon composites have specific capacitance of 144.9 and 114.9 F g−1 at 2 mV s−1, with superior electrochemical properties to pure chitosan coated carbon nanotubes after carbonization. This work demonstrates a new strategy for the resource-utilization of other heavy metal ions for energy devices, and also provides a new way to turn environmental pollutants into clean energy.


heavy metal ions adsorption chitosan coated carbon nanotube supercapacitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (51602182, 21535004, 21390411) and Shandong Provincial Natural Science Foundation (ZR2016EMQ02, ZR2016BP07).

Supplementary material

11426_2017_8215_MOESM1_ESM.doc (306 kb)
Removal of toxic metal ions using chitosan coated carbon nanotube composites for supercapacitors


  1. 1.
    Sun H, Mei L, Liang J, Zhao Z, Lee C, Fei H, Ding M, Lau J, Li M, Wang C, Xu X, Hao G, Papandrea B, Shakir I, Dunn B, Huang Y, Duan X. Science, 2017, 356: 599–604CrossRefGoogle Scholar
  2. 2.
    Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M. Energy Environ Sci, 2016, 9: 102–106CrossRefGoogle Scholar
  3. 3.
    Wang RT, Lang JW, Yan XB. Sci China Chem, 2014, 57: 1570–1578CrossRefGoogle Scholar
  4. 4.
    Faraji S, Ani FN. Renew Sustain Energy Rev, 2015, 42: 823–834CrossRefGoogle Scholar
  5. 5.
    Wang X, Kong D, Wang B, Song Y, Zhi L. Sci China Chem, 2016, 59: 713–718CrossRefGoogle Scholar
  6. 6.
    Kim HK, Bak SM, Lee SW, Kim MS, Park B, Lee SC, Choi YJ, Jun SC, Han JT, Nam KW, Chung KY, Wang J, Zhou J, Yang XQ, Roh KC, Kim KB. Energy Environ Sci, 2016, 9: 1270–1281CrossRefGoogle Scholar
  7. 7.
    Boukhalfa S, Evanoff K, Yushin G. Energy Environ Sci, 2012, 5: 6872–6879CrossRefGoogle Scholar
  8. 8.
    Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Xue Q, Xie X, Zhi C. Nat Commun, 2015, 6: 10310CrossRefGoogle Scholar
  9. 9.
    Sun J, Li W, Zhang B, Li G, Jiang L, Chen Z, Zou R, Hu J. Nano Energy, 2014, 4: 56–64CrossRefGoogle Scholar
  10. 10.
    Hao P, Cui G, Shi X, Xie J, Xia X, Sang Y, Wong CP, Liu H, Tang B. Chin J Chem, 2017, 35: 699–706CrossRefGoogle Scholar
  11. 11.
    Yu Z, Tetard L, Zhai L, Thomas J. Energy Environ Sci, 2015, 8: 702–730CrossRefGoogle Scholar
  12. 12.
    Zhang Z, Ma W, Xu B, Zhou X, Wang C, Xie Z, Liu L, Ma Y. Sci China Chem, 2018, 61: 192–199CrossRefGoogle Scholar
  13. 13.
    Acerce M, Voiry D, Chhowalla M. Nat Nanotech, 2015, 10: 313–318CrossRefGoogle Scholar
  14. 14.
    Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P. Chem Soc Rev, 2015, 44: 1777–1790CrossRefGoogle Scholar
  15. 15.
    Li X, Xiao X, Li Q, Wei J, Xue H, Pang H. Inorg Chem Front, 2018, 5: 11–28CrossRefGoogle Scholar
  16. 16.
    Zhang WJ, Huang KJ. Inorg Chem Front, 2017, 4: 1602–1620CrossRefGoogle Scholar
  17. 17.
    Zhang F, Liu T, Li M, Yu M, Luo Y, Tong Y, Li Y. Nano Lett, 2017, 17: 3097–3104CrossRefGoogle Scholar
  18. 18.
    Nyström G, Marais A, Karabulut E, Wågberg L, Cui Y, Hamedi MM. Nat Commun, 2015, 6: 7259CrossRefGoogle Scholar
  19. 19.
    Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y. Nat Nanotech, 2014, 9: 555–562CrossRefGoogle Scholar
  20. 20.
    Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z. Carbon, 2014, 67: 119–127CrossRefGoogle Scholar
  21. 21.
    Hao P, Zhao Z, Leng Y, Tian J, Sang Y, Boughton RI, Wong CP, Liu H, Yang B. Nano Energy, 2015, 15: 9–23CrossRefGoogle Scholar
  22. 22.
    Hao P, Tian J, Sang Y, Tuan CC, Cui G, Shi X, Wong CP, Tang B, Liu H. Nanoscale, 2016, 8: 16292–16301CrossRefGoogle Scholar
  23. 23.
    Gomez J, Kalu EE. J Power Sources, 2013, 230: 218–224CrossRefGoogle Scholar
  24. 24.
    Ma W, Chen S, Yang S, Chen W, Weng W, Cheng Y, Zhu M. Carbon, 2017, 113: 151–158CrossRefGoogle Scholar
  25. 25.
    Faraji S, Ani FN. J Power Sources, 2014, 263: 338–360CrossRefGoogle Scholar
  26. 26.
    Chen LY, Hou Y, Kang JL, Hirata A, Chen MW. J Mater Chem A, 2014, 2: 8448–8455CrossRefGoogle Scholar
  27. 27.
    Du W, Xu X, Zhang D, Lu Q, Gao F. Sci China Chem, 2015, 58: 627–633CrossRefGoogle Scholar
  28. 28.
    Ge F, Li MM, Ye H, Zhao BX. J Hazard Mater, 2012, 211-212: 366–372CrossRefGoogle Scholar
  29. 29.
    Rapti S, Pournara A, Sarma D, Papadas IT, Armatas GS, Hassan YS, Alkordi MH, Kanatzidis MG, Manos MJ. Inorg Chem Front, 2016, 3: 635–644CrossRefGoogle Scholar
  30. 30.
    Badruddoza AZM, Shawon ZBZ, Tay WJD, Hidajat K, Uddin MS. Carbohydrate Polym, 2013, 91: 322–332CrossRefGoogle Scholar
  31. 31.
    Demirbas A. J Hazard Mater, 2008, 157: 220–229CrossRefGoogle Scholar
  32. 32.
    Yu D, Wang H, Yang J, Niu Z, Lu H, Yang Y, Cheng L, Guo L. ACS Appl Mater Interfaces, 2017, 9: 21298–21306CrossRefGoogle Scholar
  33. 33.
    Fu F, Dionysiou DD, Liu H. J Hazard Mater, 2014, 267: 194–205CrossRefGoogle Scholar
  34. 34.
    Homhuan NB, Imwiset KJ, Bureekaew S, Ogawa M. Clay Sci, 2017, 21: 21–28Google Scholar
  35. 35.
    Tahmasebi E, Yamini Y. Microchim Acta, 2014, 181: 543–551CrossRefGoogle Scholar
  36. 36.
    Zhou Y, Zhou W, Hou D, Li G, Wan J, Feng C, Tang Z, Chen S. Small, 2016, 12: 2768–2774CrossRefGoogle Scholar
  37. 37.
    Chen Y, Zhang W, Yang S, Hobiny A, Alsaedi A, Wang X. Sci China Chem, 2016, 59: 412–419CrossRefGoogle Scholar
  38. 38.
    Li Y, Zhang J, Xu C, Zhou Y. Sci China Chem, 2016, 59: 95–105CrossRefGoogle Scholar
  39. 39.
    Fan L, Zhang N, Sun K. RSC Adv, 2014, 4: 21419CrossRefGoogle Scholar
  40. 40.
    Hu J, Tao P, Wang S, Liu Y, Tang Y, Zhong H, Lu Z. J Mater Chem A, 2013, 1: 6558CrossRefGoogle Scholar
  41. 41.
    Tao P, Hu J, Wang W, Wang S, Li M, Zhong H, Tang Y, Lu Z. RSC Adv, 2014, 4: 13518CrossRefGoogle Scholar
  42. 42.
    Cho HH, Wepasnick K, Smith BA, Bangash FK, Fairbrother DH, Ball WP. Langmuir, 2010, 26: 967–981CrossRefGoogle Scholar
  43. 43.
    Lee J, Lee DM, Kim YK, Jeong HS, Kim SM. Small, 2017, 13: 1701131CrossRefGoogle Scholar
  44. 44.
    Kolhe P, Kannan RM. Biomacromolecules, 2003, 4: 173–180CrossRefGoogle Scholar
  45. 45.
    Gu X, Yang Y, Hu Y, Hu M, Wang C. ACS Sustain Chem Eng, 2015, 3: 1056–1065CrossRefGoogle Scholar
  46. 46.
    Wei B, Liang H, Zhang D, Wu Z, Qi Z, Wang Z. J Mater Chem A, 2017, 5: 2844–2851CrossRefGoogle Scholar
  47. 47.
    Pandey K, Yadav P, Mukhopadhyay I. Phys Chem Chem Phys, 2015, 17: 878–887CrossRefGoogle Scholar
  48. 48.
    Li Q, Li K, Sun C, Li Y. J Electroanal Chem, 2007, 611: 43–50CrossRefGoogle Scholar
  49. 49.
    Wang Y, Zhang Y, Pei L, Ying D, Xu X, Zhao L, Jia J, Cao X. Sci Rep, 2017, 7: 41523CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pin Hao
    • 1
  • Xiaoye Ma
    • 1
  • Junfeng Xie
    • 1
  • Fengcai Lei
    • 1
  • Liyi Li
    • 2
  • Wenqian Zhu
    • 1
  • Xin Cheng
    • 1
  • Guanwei Cui
    • 1
  • Bo Tang
    • 1
  1. 1.College of Chemistry, Chemical Engineering and Materials Science, Institute of Materials and Clean Energy, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal UniversityJinanChina
  2. 2.Intel CorporationHillsboroUSA

Personalised recommendations