Skip to main content
Log in

Facet-dependent electrochemiluminescence spectrum of nanostructured ZnO

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A facet-dependent electrochemiluminescence (ECL) behavior was found for nanostructured ZnO with different dominant exposing planes. The ECL spectrum of nanostructured ZnO was recorded by the emission scan mode with a fluorescence spectrometer and applied to investigate the difference of surface state for different crystal planes. Electronic structure calculations based on density functional theory were used to study the effect of crystal plane on the band structure and density of states. It revealed that the ECL emission was originated primarily from the recombination of electrons from Zn 4s and the hole from O 2p, which could be utilized to study the physical and chemical properties of surface structures of as-prepared nanostructured ZnO. A physical model was suggested to elucidate the differences of ECL spectra. A concept was proposed that the energy released as photons during ECL process of nanocrystalline semiconductor materials will be correlated with the energy level of active sites located at different crystal planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang ZL. Zinc oxide nanostructures: Growth, properties and applications. J Phys: Condens Matter 2004, 16: R829–R858

    Article  CAS  Google Scholar 

  2. Klingshirn C. ZnO: Material, physics and applications. Chem-PhysChem 2007, 8: 782–803

    Article  CAS  Google Scholar 

  3. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoç H. A comprehensive review of ZnO materials and devices. J Appl Phys, 2005, 98: 041301

    Article  Google Scholar 

  4. Ahmad M, Zhu J. ZnO based advanced functional nanostructures: synthesis, properties and applications. J Mater Chem, 2010, 21: 599–614

    Article  Google Scholar 

  5. Chang PC, Fan ZY, Wang DW, Tseng W, Chiou WA, Hong J, Lu JG. ZnO Nanowires synthesized by vapor trapping CVD method. Chem Mater, 2004, 16: 5133–5137

    Article  CAS  Google Scholar 

  6. Chen T, Xing GZ, Zhang Z, Chen HY, Wu T. Tailoring the photoluminescence of ZnO nanowires using Au nanoparticles. Nanotechnology, 2008, 19: 435711

    Article  CAS  Google Scholar 

  7. Gao P, Wang ZZ, Liu KH, Xu Z, Wang WL, Bai XD, Wang EG. Photoconducting response on bending of individual ZnO nanowires. J Mater Chem, 2009, 19: 1002–1005

    Article  CAS  Google Scholar 

  8. Li Q, Kumar V, Li Y, Zhang H, Marks TJ, Chang RPH. Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem Mater, 2005, 17: 1001–1006

    Article  Google Scholar 

  9. Bano N, Hussain I, Nur O, Willander M, Klason P. Study of radiative defects using current-voltage characteristics in ZnO rods catalytically grown on 4H-p-SiC. J Nanomater, 2010, 2010: 1–5

    Article  Google Scholar 

  10. Gao H, Yan F, Li J, Zeng Y, Wang J. Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaN-based LED epiwafer using a solution deposition method. J Phys D: Appl Phys, 2007, 40: 3654–3659

    Article  CAS  Google Scholar 

  11. Han XG, He HZ, Kuang Q, Zhou X, Zhang XH, Xu T, Xie ZX, Zheng LS. Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J Phys Chem C, 2009, 113: 584–589

    Article  CAS  Google Scholar 

  12. Kong XY, Ding Y, Yang R, Wang ZL. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303: 1348–1351

    Article  CAS  Google Scholar 

  13. Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science, 2001, 291: 1947–1949

    Article  CAS  Google Scholar 

  14. Jang ES, Won JH, Hwang SJ, Choy JH. Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv Mater, 2006, 18: 3309–3312

    Article  CAS  Google Scholar 

  15. Gao PX, Wang ZL. Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals. J Am Chem Soc, 2003, 125: 11299–11305

    Article  CAS  Google Scholar 

  16. Cao B, Cai W, Duan G, Li Y, Zhao Q, Yu D. A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties. Nanotechnology, 2005, 16: 2567–2574

    Article  CAS  Google Scholar 

  17. Djurišić AB, Choy WCH, Roy VAL, Leung YH, Kwong CY, Cheah KW, Gundu Rao TK, Chan WK, Lui Fei H, Surya C. Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures. Adv Funct Mater, 2004, 14: 856–864

    Article  Google Scholar 

  18. Zhou X, Xie ZX, Jiang ZY, Kuang Q, Zhang SH, Xu T, Huang RB, Zheng LS. Formation of ZnO hexagonal micro-pyramids: A successful control of the exposed polar surfaces with the assistance of an ionic liquid. Chem Commun, 2005: 5572–5574

  19. Wang J, An X, Li Q, Egerton RF. Size-dependent electronic structures of ZnO nanowires. Appl Phys Lett, 2005, 86: 201911

    Article  Google Scholar 

  20. Yang Y, Yan XH, Xiao Y, Lu D. Size-dependent strain effects on electronic and optical properties of ZnO nanowires. Appl Phys Lett, 2010, 97: 033106

    Article  Google Scholar 

  21. McLaren A, Valdes-Solis T, Li G, Tsang SC. Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc, 2009, 131: 12540–12541

    Article  CAS  Google Scholar 

  22. Kislov N, Lahiri J, Verma H, Goswami DY, Stefanakos E, Batzill M. Photocatalytic degradation of methyl orange over single crystalline ZnO: Orientation dependence of photoactivity and photostability of ZnO. Langmuir, 2009, 25: 3310–3315

    Article  CAS  Google Scholar 

  23. Chu D, Masuda Y, Ohji T, Kato K. Formation and photocatalytic application of ZnO nanotubes using aqueous solution. Langmuir, 2009, 26: 2811–2815

    Article  Google Scholar 

  24. Li GR, Hu T, Pan GL, Yan TY, Gao XP, Zhu HY. Morphology-function relationship of ZnO: Polar planes, oxygen vacancies, and activity. J Phys Chem C, 2008, 112: 11859–11864

    Article  CAS  Google Scholar 

  25. Wang Y, Lu J, Tang L, Chang H, Li J. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal Chem, 2009, 81: 9710–9715

    Article  CAS  Google Scholar 

  26. Li L, Li M, Sun Y, Li J, Sun L, Zou G, Zhang X, Jin W. Electrochemiluminescence resonance energy transfer between an emitter electrochemically generated by luminol as the donor and luminescent quantum dots as the acceptor and its biological application. Chem Commun, 2012, 47: 8292–8294

    Article  Google Scholar 

  27. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev, 2008, 108: 2506–2553

    Article  CAS  Google Scholar 

  28. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science, 2002, 296: 1293–1297

    Article  CAS  Google Scholar 

  29. Myung N, Ding Z, Bard AJ. Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett, 2002, 2: 1315–1319

    Article  CAS  Google Scholar 

  30. Myung N, Bae Y, Bard AJ. Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett, 2003, 3: 1053–1055

    Article  CAS  Google Scholar 

  31. Bae Y, LD C, Rhogojina EV, C. JD, Korgel BA, Bard AJ. Electrochemistry and electrogenerated chemiluminescence of films of silicon nanoparticles in aqueous solution. Nanotechnology, 2006, 17: 3791–3797

    Article  CAS  Google Scholar 

  32. Myung N, Lu X, Johnston KP, Bard AJ. Electrogenerated chemiluminescence of Ge nanocrystals. Nano Lett, 2004, 4: 183–185

    Article  CAS  Google Scholar 

  33. Haram SK, Quinn BM, Bard AJ. Electrochemistry of CdS nanoparticles: A correlation between optical and electrochemical band gaps. J Am Chem Soc, 2001, 123: 8860–8861

    Article  CAS  Google Scholar 

  34. Bae Y, Myung N, Bard AJ. Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett, 2004, 4: 1153–1161

    Article  CAS  Google Scholar 

  35. Aldana J, Wang YA, Peng X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc, 2001, 123: 8844–8850

    Article  CAS  Google Scholar 

  36. Fan F-RF, Park S, Zhu Y, Ruoff RS, Bard AJ. Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles. J Am Chem Soc, 2008, 131: 937–939

    Article  Google Scholar 

  37. Zhang R, Fan L, Fang Y, Yang S. Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO. J Mater Chem, 2008, 18: 4964–4970

    Article  CAS  Google Scholar 

  38. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B, 1990, 41: 7892–7895

    Article  Google Scholar 

  39. Kou L, Zhang Y, Li C, Guo W, Chen C. Local-strain-induced charge carrier separation and electronic structure modulation in Zigzag ZnO nanotubes: Role of built-in polarization electric field. J Phys Chem C, 2011, 115: 2381–2385

    Article  CAS  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  41. Yong Y, Song B, He P. Growth pattern and electronic properties of cluster-assembled material based on Zn12O12: A density-functional study. J Phys Chem C, 2011, 115: 6455–6461

    Article  CAS  Google Scholar 

  42. Kurita R, Arai K, Nakamoto K, Kato D, Niwa O. Determination of DNA methylation using electrochemiluminescence with surface accumulable coreactant. Anal Chem, 2012, 84: 1799–1803

    Article  CAS  Google Scholar 

  43. Wang J, Shan Y, Zhao WW, Xu JJ, Chen HY. Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection. Anal Chem, 2011, 83: 4004–4011

    Article  CAS  Google Scholar 

  44. Gurlo A. Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale, 2011, 3: 154–165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JiFeng Liu or Peng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Yue, Q., Li, H. et al. Facet-dependent electrochemiluminescence spectrum of nanostructured ZnO. Sci. China Chem. 56, 86–92 (2013). https://doi.org/10.1007/s11426-012-4703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4703-x

Keywords

Navigation