Skip to main content
Log in

Theoretical studies of the structures and spectroscopic properties of the photoelectrochemical cell ruthenium sensitizers, C101 and J13

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A variety of heteroleptic ruthenium sensitizers have been engineered and synthesized because of their higher light-harvesting efficiency and lower charge-recombination possibility than the well known homoleptic N3 dye. As such, a great deal of attention has been focused on sensitizers with the general formula Ru(ancillary-ligand)(anchoring-ligand)(NCS)2, among which important examples are Ru(4,4′-bis(5-hexylthiophen-2-yl)-2,2′-bipyridine)(4,4′-carboxylic acid-4′-2,2′-bipyridine)(NCS)2 (C101) and Ru(N-(4-butoxyphenyl)-N-2-pyridinyl-2-pyridinamine)(4,4′-carboxylic acid-4′-2,2′-bipyridine)(NCS)2 (J13). In order to simulate experimental conditions with different pH values, the photosensitizing processes of these sensitizers possessing different degrees of deprotonation (2H, 1H to 0H) have been explored theoretically in this work. Their ground/excited state geometries, electronic structures and spectroscopic properties are first calculated using density functional theory (DFT) and time-dependent DFT (TDDFT). The absorption and emission spectra of all the complexes in acetonitrile solution are also predicted at the TDDFT (B3LYP) level. The calculated results show that the ancillary ligand contributes to the molecular orbital (MO) energy levels and absorption transitions. It is intriguing to observe that the introduction of a thiophene group into the ancillary ligand leads directly to the increased energy of the absorption transitions in the 380–450 nm region. The calculations reveal that although deprotonation destabilizes the overall frontier MOs of the chromophores, it tends to exert a greater influence on the unoccupied orbitals than on the occupied orbitals. Consequently, an obvious blue shift was observed for the absorptions and emissions in going from 2H, 1H to 0H. Finally, the optimal degree of deprotonation for C101 and J13 has also been evaluated, which is expected to lead to further improvements in the performance of dye-sensitized solar cells (DSSCs) coated with such sensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740

    Article  Google Scholar 

  2. Hagfeldt A, Grätzel M. Molecular photovoltaics. Acc Chem Rev, 2000, 33: 269–277

    Article  CAS  Google Scholar 

  3. Grätzel M. Photoelectrochemical cells. Nature, 2001, 414: 338–344

    Article  Google Scholar 

  4. Kalyanasundaram K, Grätzel M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord Chem Rev, 1998, 177: 347–414

    Article  CAS  Google Scholar 

  5. Hara K, Sato T, Katoh R. Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J Phys Chem B, 2003, 107: 597–606

    Article  CAS  Google Scholar 

  6. Horiuchi T, Miura H, Sumioka K, Uchida S. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J Am Chem Soc, 2004, 126: 12218–12219

    Article  CAS  Google Scholar 

  7. Morandeira A, Boschloo G, Hagfeldt A, Hammarstrolm L. Photoinduced ultrafast dynamics of coumarin 343 sensitized p-type-nanostructured NiO films. J Phys Chem B, 2005, 109: 19403–19410

    Article  CAS  Google Scholar 

  8. Ito S, Zakeeruddin SM, Humphry-Baker R. High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv Mater, 2006, 18: 1202–1205

    Article  CAS  Google Scholar 

  9. Dong HQ, Zhao ZL, Wen HY, Li YY, Guo FF, Shen AJ, Pilger F, Lin C, Shi DL. Poly(ethylene glycol) conjugated nano-graphene oxide for photodynamic therapy. Sci China Chem, 2010, 53: 2265–2271

    Article  CAS  Google Scholar 

  10. Kuciauskas D, Freund MS, Gray HB, Winkler JR, Lewis NS. Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes. J Phys Chem B, 2001, 105: 392–403

    Article  CAS  Google Scholar 

  11. Islam A, Sugihara H, Hara K, Singh LP, Katoh R, Yanagida M, Takahashi Y, Murata S, Arakawa H, Fujihashi G. Dye sensitization of nanocrystalline titanium dioxide with square planar platinum(II) diimine dithiolate complexes. Inorg Chem, 2001, 40: 5371–5380

    Article  CAS  Google Scholar 

  12. Wang Q, Campbell WM, Bonfantani EE, Jolley KW, Officer DL. Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films. J Phys Chem B, 2005, 109: 15397–15409

    Article  CAS  Google Scholar 

  13. Geary EAM, Yellowlees LJ, Jack LA, Oswald IDH. Synthesis, structure, and properties of [Pt(II)(diimine)(dithiolate)] dyes with 3,3′-, 4,4′-, and 5,5′-disubstituted bipyridyl: Applications in dye-sensitized solar cells. Inorg Chem, 2005, 44: 242–250

    Article  CAS  Google Scholar 

  14. Nazzruddin MK, Kay A, Rodicio I, Humphry-Baker R. Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc, 1993, 115: 6382–6390

    Article  Google Scholar 

  15. Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Jirousek M, Liska P. Acid-base equilibria of (2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg Chem, 1999, 38: 6298–6305

    Article  CAS  Google Scholar 

  16. Nazeeruddin MK, Pechy P, Renouard T, Zakeeruddin SM. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc, 2001, 123: 1613–1624

    Article  CAS  Google Scholar 

  17. Komatsuzaki NO, Yanagida M, Funaki T, Kasuga K, Sayama K, Sugihara H. Near-IR dye-sensitized solar cells using a new type of ruthenium complexes having 2,6-bis(quinolin-2-yl)pyridine derivatives. Sol Energy Mater Sol Cells, 2011, 95: 310–314

    Article  Google Scholar 

  18. Jang SR, Choi MJ, Vittal R, Kim KJ. Anchorage of N3 dye-linked polyacrylic acid to TiO2/electrolyte interface for improvement in the performance of a dye-sensitized solar cell. Sol Energy Mater Sol Cells, 2007, 91: 1209–1214

    Article  CAS  Google Scholar 

  19. Wang P, Klein C, Humphry-Baker R, Zakeeruddin SM, Grätzel M. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. J Am Chem Soc, 2005, 127: 808–809

    Article  CAS  Google Scholar 

  20. Wang P, Klein C, Humphry-Baker R, Zakeeruddin SM, Grätzel M. Stable ⩽8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility. Appl Phys Lett, 2005, 86: 123508–123511

    Article  Google Scholar 

  21. Gao FF, Wang Y, Shi D, Zhang J, Wang M, Jing XY, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc, 2008, 130: 10720–10728

    Article  CAS  Google Scholar 

  22. Chen CY, Chen JG, Wu SJ, Li JY, Wu CG, Ho KC. Multifunctionalized ruthenium-based supersensitizers for highly efficient dye-sensitized solar cells. Angew Chem Int Ed, 2008, 47: 7342–7345

    Article  CAS  Google Scholar 

  23. Kisserwan H, Ghaddar TH. Enhancement of photovoltaic performance of a novel dye, “T18”, with ketene thioacetal groups as electron donors for high efficiency dye-sensitized solar cells. Inorg Chim Acta, 2010, 363: 2409–2415

    Article  CAS  Google Scholar 

  24. Shi D, Pootrakulchote N, Li R, Guo J, Wang Y, Zakeeruddin SM, Grätzel M, Wang P. New efficiency records for stable dye-sensitized solar cells with low-volatility and ionic liquid electrolytes. J Phys Chem C, 2008, 112: 17046–17050

    Article  CAS  Google Scholar 

  25. Jin ZZ, Masuda H, Yamanaka N, Minami M, Nakamura T, Nishikitani Y. Efficient electron transfer ruthenium sensitizers for dye-sensitized solar cells. J Phys Chem C, 2009, 113: 2618–2623

    Article  CAS  Google Scholar 

  26. Jin ZZ, Masuda H. Triarylamine-functionalized ruthenium dyes for efficient dye-sensitized solar cells. ChemSusChem, 2008, 1: 901–904

    Article  CAS  Google Scholar 

  27. Yan SG, Hupp JT. Semiconductor-based interfacial electron-transfer reactivity: Decoupling kinetics from ph-dependent band energetics in a dye-sensitized titanium dioxide/aqueous solution system. J Phys Chem, 1996, 100: 6867–6870

    Article  CAS  Google Scholar 

  28. Gerisher H. Neglected problems in the pH dependence of the flatband potential of semiconducting oxides and semiconductors covered with oxide layers. Electrochim Acta, 1989, 34: 1005–1009

    Article  Google Scholar 

  29. Nazeeruddin MK, Angelis FD, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Taleru B, Grätzel M. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc, 2005, 127: 16835–16847

    Article  CAS  Google Scholar 

  30. Bisquert J, Cahen D, Hodes G, Ruehle S, Zaban A. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B, 2004, 108: 8106–8118

    Article  CAS  Google Scholar 

  31. Nazeeruddin MK, Humphry-Baker R, Liska P, Grätzel M. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 Solar Cell. J Phys Chem B, 2003, 127: 8981–8987

    Article  Google Scholar 

  32. Su R, Xue WD, Feng Y, Wang JH, Yi D. Sensitization mechanism of tris(8-hydroxyquinoline)iron(III) on TiO2 anatase (101) surface. Acta Phys-Chim Sin, 2009, 25: 947–952

    CAS  Google Scholar 

  33. Ardo S, Meyer GJ. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem Soc Rev, 2009, 38: 115–164

    Article  CAS  Google Scholar 

  34. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. Chem Phys, 1993, 98: 5648–5652

    CAS  Google Scholar 

  35. Yang Y, Bai FQ, Zhang HX, Zhou X, Sun CC. Theoretical studies on structures and spectroscopic properties of a series of heteroleptic iridium complexes based on tridentate bis(benzimidazolyl)pyridine ligand. Comput Theoret Chem, 2011, 963: 298–305

    Article  CAS  Google Scholar 

  36. Casida ME, Jamorski C, Casida KC, Salahub DR. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys, 1998, 108: 4439–4449

    Article  CAS  Google Scholar 

  37. Stratmann RE, Scuseria GE. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys, 1998, 109: 8218–8224

    Article  CAS  Google Scholar 

  38. Matsuzawa NN, Ishitani A. Time-dependent density functional theory calculations of photoabsorption spectra in the vacuum ultraviolet region. J Phys Chem A, 2001, 105: 4953–4962

    Article  CAS  Google Scholar 

  39. Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A, 1998, 102: 1995–2001

    Article  CAS  Google Scholar 

  40. Cossi M, Rega N, Scalmani G, Barone V. Energies, structures, and electronic properties of molecules in solution with the CPCM solvation model. J Comput Chem, 2003, 24: 669–681

    Article  CAS  Google Scholar 

  41. Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett, 1996, 256: 454–464

    Article  CAS  Google Scholar 

  42. Rosa A, Baerends EJ, Gisbergen SJ. Electronic spectra of M(CO)6 (M = Cr, Mo, W) revisited by a relativistic TDDFT Approach. J Am Chem Soc, 1999, 121: 10356–10365

    Article  CAS  Google Scholar 

  43. Li MX, Zhou X, Xia BH, Zhang HX, Pan QJ, Liu T, Fu HG, Sun CC. Theoretical studies on structures and spectroscopic properties of photoelectrochemical cell ruthenium sensitizers, [Ru(Hmtcterpy) (NCS)3]n (m = 0, 1, 2, and 3; n = 4, 3, 2, and 1). Inorg Chem 2008; 47: 2312–24

    Article  CAS  Google Scholar 

  44. Wadt WR, Hay PJ. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys, 1985, 82: 284–298

    Article  CAS  Google Scholar 

  45. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys, 1985, 82: 299–310

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian09, Revision B.02, Gaussian, Inc., Wallingford CT, 2009

    Google Scholar 

  47. Chatt J, Duncanson LA. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: Attempted preparation of acetylene complexes. J Chem Soc, 1953, 2939–2947

  48. Boulet P, Chermette H, Daul C, Gilardoni F, Rogemond F, Weber J, Zuber G. Absorption spectra of several metal complexes revisited by the time-dependent density-functional theory-response theory formalism. J Phys Chem A, 2001, 105: 885–894

    Article  CAS  Google Scholar 

  49. Monat JE, Rodriguez JH, McCusker JK. Ground- and excited-state electronic structures of the solar cell sensitizer bis (4,4′-dicarboxylato-2,2′-bipyridine)bis(isothiocyanato) ruthenium(II). J Phys Chem A, 2002, 106: 7399–7406

    Article  CAS  Google Scholar 

  50. Fantacci S, Angelis FD, Selloni A. Absorption spectrum and solvatochromism of the [Ru(4,4′-COOH-2,2′-bpy)2(NCS)2] molecular dye by time dependent density functional theory. J Am Chem Soc, 2003, 125: 4381–4387

    Article  CAS  Google Scholar 

  51. Barolo C, Nazeeruddin MK, Fantacci S, Censo DD, Comte P, Liska P, Viscard G, Quagliotto P, Angelis FD, Ito S, Grätzel M. Synthesis, characterization, and DFT-TDDFT computational study of a ruthenium complex containing a functionalized tetradentate ligand. Inorg Chem, 2006, 45: 4642–4653

    Article  CAS  Google Scholar 

  52. Angelis FD, Fantacci S, Selloni A. Time-dependent density functional theory study of the absorption spectrum of [Ru (4,4′-COOH-2,2′-bpy)2(NCS)2] in water solution: Influence of the pH. Chem Phys Lett, 2004, 389: 204–208

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to QingJiang Pan or HongXing Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Bai, F., Wang, J. et al. Theoretical studies of the structures and spectroscopic properties of the photoelectrochemical cell ruthenium sensitizers, C101 and J13. Sci. China Chem. 55, 398–408 (2012). https://doi.org/10.1007/s11426-011-4483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4483-8

Keywords

Navigation