Skip to main content
Log in

Formation mechanism and magnetic properties of three different hematite nanostructures synthesized by one-step hydrothermal procedure

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The spindle-like, tubular, and tire-like hematite were successively fabricated by a facile, one-step hydrothermal procedure, which is of great importance in facilitating the controllable-synthesis process of commercial industrialization. A mechanism involving a formation-dissolution process was proposed based on the X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy analysis. It was demonstrated that the presence of phosphate ions during the reaction process is crucial to the morphology evolution of hematite. Their different adsorption ability on the different crystallographic planes of hematite and a coordination effect with ferric ions could promote the preferential dissolution of the spindle-like hematite precursors along the long axis [001] from the tips down to the interior, and thus yield the tubular and tire-like hematite one by one with the increasing reaction time. The magnetic measurements have also been performed to investigate the different magnetic properties such as coercivity and low-temperature transition behavior of three different hematite nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wen XG, Wang SH, Ding Y, Wang ZL, Yang SH. Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J Phys Chem B, 2005, 109: 215–220

    Article  CAS  Google Scholar 

  2. Lian SY, Wang EB, Gao L, Wu D, Song YL, Xu L. Surfactant-assisted solvothermal preparation of submicrometer-sized hollow hematite particles and their photocatalytic activity. Mater Res Bull, 2006, 41: 1192–1198

    Article  CAS  Google Scholar 

  3. Brown ASS, Hargreaves JSJ, Rijniersce B. A study of the structural and catalytic effects of sulfation on iron oxide catalysts prepared from goethite and ferrihydrite precursors for methane oxidation. Catal Lett, 1999, 53: 7–13

    Article  Google Scholar 

  4. Faust BC, Hoffmann MR, Bahnemann DW. Photocatalytic oxidation of sulfur cioxide in aqueous suspensions of α-Fe2O3. J Phys Chem, 1989, 93: 6371–6381

    Article  CAS  Google Scholar 

  5. Han JS, Bredow T, Davey DE, Yu AB, Mulcahy DE. The effect of Al addition on the gas sensing properties of Fe2O3-based sensors. Sens Actuators B, 2001, 75: 18–23

    Article  Google Scholar 

  6. Chen J, Xu L, Li W, Gou X. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater, 2005, 17: 582–586

    Article  CAS  Google Scholar 

  7. Huo LH, Li Q, Zhao H, Yu LJ, Gao S, Zhao JG. Sol-gel route to pseudocubic shaped α-Fe2O3 alcohol sensor preparation and characterization. Sens. Actuators B, 2005, 107: 915–920

    Article  Google Scholar 

  8. Sun HT, Cantalini C, Faccio M, Pelino M, Catalano M, Tapfer L. Porous silica-coated α-Fe2O3 ceramics for humidity measurement at elevated temperature. J Am Ceram Soc, 1996, 79: 927–937

    Article  CAS  Google Scholar 

  9. Lee YC, Chueh YL, Hsieh CH, Chang MT, Chou LJ, Wang ZL, Lan YW, Chen CD, Kurata H, Isoda S. P-type α-Fe2O3 nanowires and their n-type transition in a reductive ambient. Small, 2007, 8: 1356–1361

    Article  Google Scholar 

  10. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26: 3995–4021

    Article  CAS  Google Scholar 

  11. Lian SY, Wang EB, Kang ZH, Bai YP, Gao L, Jiang M, Hu CW, Xu L. Synthesis of magnetite nanorods and porous hematite nanorods. Solid State Commun, 2004, 129: 485–490

    Article  CAS  Google Scholar 

  12. Jing ZH, Wu SH. Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. Mater Lett, 2004, 58: 3637–3640

    Article  CAS  Google Scholar 

  13. Fu YY, Chen J, Zhang H. Synthesis of Fe2O3 nanowires by oxidation of iron. Chem Phys Lett, 2001, 350: 491–494

    Article  CAS  Google Scholar 

  14. Fu YY, Wang RM, Xu J, Chen J, Yan Y, Narlikar AV, Zhang H. Synthesis of large arrays of aligned α-Fe2O3 nanowires. Chem Phys Lett, 2003, 379: 373–379

    Article  CAS  Google Scholar 

  15. Chueh YL, Lai MW, Liang JQ, Chou LJ, Wang ZL. Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor-solid process. Adv Funct Mater, 2006, 16: 2243–2251

    Article  CAS  Google Scholar 

  16. Chen XY, Zhang ZJ, Qiu ZG, Shi C, Wu LXL. A facile biomolecule-assisted approach for fabricating α-Fe2O3 nanowires in solution. Solid State Commun, 2006, 140: 267–269

    Article  CAS  Google Scholar 

  17. Zhu Y, Zhang JC, Zhai J, Jiang L. Preparation of superhydrophilic α-Fe2O3 nanofibers with tunable magnetic properties. Thin Solid Films, 2006, 510: 271–274

    Article  CAS  Google Scholar 

  18. Vayssieres L, Beermann N, Lindquist SE, Hagfeldt A. Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron (III) oxides. Chem Mater, 2001, 13: 233–235

    Article  CAS  Google Scholar 

  19. Xiong YJ, Li ZQ, Li XX, Hu B, Xie Y. Thermally stable hematite hollow nanowires. Inorg Chem, 2004, 43: 6540–6542

    Article  CAS  Google Scholar 

  20. Liu ZQ, Zhang DH, Han S, Li C, Lei B, Lu WG, Fang JY, Zhou CW. Single crystalline magnetite nanotubes. J Am Chem Soc, 2005, 127: 6–7

    Article  CAS  Google Scholar 

  21. Sahu KK, Rath C, Mishra NC, Anand S, Das RP. Microstructural and magnetic studies on hydrothermally prepared hematite. J Colloid Interface Sci, 1997, 185: 402–410

    Article  Google Scholar 

  22. Liang X, Wang X, Zhuang J, Chen YT, Wang DS, Li YD. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv Funct Mater, 2006, 16: 1805–1813

    Article  CAS  Google Scholar 

  23. Chaianansutcharit S, Mekasuwandumrong O, Praserthdam P. Effect of organic solvents on iron oxide nanoparticles by the solvothermal method. Cryst Growth Des, 2006, 6: 40–45

    Article  CAS  Google Scholar 

  24. Ni YH, Ge XW, Zhang ZC, Ye Q. Fabrication and characterization of the plate-shaped α-Fe2O3 nanocrystals. Chem Mater, 2002, 14: 1048–1052

    Article  CAS  Google Scholar 

  25. Suber L, Fiorani D, Imperatori P, Foglia S, Montone A, Zysler R. Effects of thermal treatments on structural and magnetic properties of acicular α-Fe2O3 nanoparticles. Nanostruct Mater, 1999, 11: 797–803

    Article  CAS  Google Scholar 

  26. Li SZ, Zhang H, Wu JB, Ma XY, Yang DR. Shape-control fabrication and characterization of the airplane-like FeO(OH) and Fe2O3 nanostructures. Cryst Growth Des, 2006, 6: 351–353

    Article  CAS  Google Scholar 

  27. Liu XM, Fu SY, Xiao HM, Huang CJ. Preparation and characterization of shuttle-like α-Fe2O3 nanoparticles by supermolecular template. J Solid State Chem, 2005, 178: 2798–2803

    Article  CAS  Google Scholar 

  28. Ngo AT, Pileni MP. Cigar-shaped ferrite nanocrystals: Orientation of the easy magnetic axes. J Appl Phys, 2002, 92: 4649–4652

    Article  CAS  Google Scholar 

  29. Cao MH, Liu TF, Gao S, Sun GB, Wu XL, Hu CW, Wang ZL. Single-crystal dendritic micro-pines of magnetic α-Fe2O3: Large-scale synthesis, formation mechanism, and properties. Angew Chem, 2005, 117: 4269–4273

    Article  Google Scholar 

  30. Zhu LP, Xiao HM, Liu XM, Fu SY. Template-free synthesis and characterization of novel 3D urchin-like α-Fe2O3 superstructures. J Mater Chem, 2006, 16: 1794–1797

    Article  CAS  Google Scholar 

  31. Zhu LP, Xiao HM, Fu SY. Template-free synthesis of monodispersed and single-crystalline cantaloupe-like Fe2O3 superstructures. Cryst Growth Des, 2007, 7: 177–182

    Article  CAS  Google Scholar 

  32. Wang SB, Min YL, Yu SH. Synthesis and magnetic properties of uniform hematite nanocubes. J Phys Chem C, 2007, 111: 3551–3554

    Article  CAS  Google Scholar 

  33. Jia CJ, Sun LD, Yan ZG, Pang YC, You LP, Yan CH. Iron oxide tube-in-tube nanostructures. J Phys Chem C, 2007, 111: 13022–13027

    Article  CAS  Google Scholar 

  34. Li LL, Chu Y, Liu Y, Dong LH. Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres. J Phys Chem C, 2007, 111: 2123–2127

    Article  CAS  Google Scholar 

  35. Jing Z, Wu S. Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. Mater Lett, 2004, 58: 3637–3640

    Article  CAS  Google Scholar 

  36. Liu L, Kou HZ, Mo W, Liu H, Wang Y. Surfactant-assisted synthesis of α-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. J Phys Chem B, 2006, 110: 15218–15223

    Article  CAS  Google Scholar 

  37. Zeng S, Tang K, Li T. Controlled synthesis of α-Fe2O3 nanorods and its size-dependent optical absorption, electrochemical, and magnetic properties. J Colloid Interface Sci, 2007, 312: 513–521

    Article  CAS  Google Scholar 

  38. Zhao Y, Dunhill CW, Zhu Y, Gregory DH, Kockenberger W, Li Y, Hu W, Ahmad I, McCartney DG. Low-temperature magnetic properties of hematite nanorods. Chem Mater, 2007, 19: 916–921

    Article  CAS  Google Scholar 

  39. Liu XQ, Tao SW, Shen YS. Preparation and characterization of nanocrystalline α-Fe2O3 by a sol-gel process. Sens Actuators B, 1997, 40: 161–165

    Article  Google Scholar 

  40. Yener DO, Giesche H. Synthesis of pure and manganese-, nickel-, and zinc-doped ferrite particles in water-in-oil microemulsions. J Am Ceram Soc, 2001, 84: 1987–1995

    Article  CAS  Google Scholar 

  41. Li Q, Wei Y, Study on preparing monodispersed hematite nanoparticles by microwave-induced hydrolysis of ferric salts solution. Mater Res Bull, 1998, 33: 779–782

    Article  CAS  Google Scholar 

  42. Liu X, Qiu G, Yan A, Wang Z, Li X, Hydrothermal synthesis and characterization of α-FeOOH and α-Fe2O3 uniform nanocrystallines. J Alloys Compd, 2007, 433: 216–220

    Article  CAS  Google Scholar 

  43. Zysler RD, Vasquez-Mansilla M, Arciprete C, Dimitrijewits M, Rodriguez-Sierra D, Saragovi C. Structure and magnetic properties of thermally treated nanohematite. J Magn Magn Mater, 2001, 224: 39–48

    Article  CAS  Google Scholar 

  44. Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater, 2007, 53: 117–166

    Article  CAS  Google Scholar 

  45. Lester E, Blood P, Denyer J, Giddings D, Azzopardi B, Poliakoff M. Reaction engineering: The supercritical water hydrothermal synthesis of nano-particles. J Supercrit Fluids, 2006, 37: 209–214

    Article  CAS  Google Scholar 

  46. Xu C, Teja CX. Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles. J Supercrit Fluids, 2008, 44: 85–91

    Article  CAS  Google Scholar 

  47. Caremans TP, Kirschhock CEA, Verlooy P, Paul JS, Jacobs PA, Martens JA. Prototype high-throughput system for hydrothermal synthesis and X-ray diffraction of microporous and mesoporous materials. Microporous Mesoporous Mater, 2006, 90: 62–68

    Article  CAS  Google Scholar 

  48. Stock N, Bein T. High-throughput investigation in the synthesis of the alluaudite-type manganese arsenate: AgMn3(AsO4)(HAsO4)2. Solid State Sci, 2003, 5: 1207–1210

    Article  CAS  Google Scholar 

  49. Ozaki M, Kratohvil S, Matijević E. Formation of monodispersed spindle-type hematite particles. J Colloid Interface Sci, 1984, 102: 146–151

    Article  CAS  Google Scholar 

  50. Sugimoto T, Muramatsu A, Sakata K, Shindo DJ. Characterization of hematite particles of different shapes. J Colloid Interface Sci, 1993, 158: 420–428

    Article  CAS  Google Scholar 

  51. Ocaña M, Morales MP, Serna CJ. The growth mechanism of α-Fe2O3 ellipsoidal particles in solution. J Colloid Interface Sci, 1995, 171: 85–91

    Article  Google Scholar 

  52. Li F, Ding Y, Gao PX, Xin XQ, Wang ZL. Single-crystal hexagonal disks and rings of ZnO: low-temperature, large-scale synthesis and growth mechanism. Angew Chem, 2004, 116: 5350–5354

    Article  Google Scholar 

  53. Barrón V, Torrent J. Surface hydroxyl configuration of various crystal faces of hematite and goethite. J Colloid Interface Sci, 1996, 177: 407–410

    Article  Google Scholar 

  54. Huang X. Intersection of isotherms for phosphate adsorption on hematite. J Colloid Interface Sci, 2004, 271: 296–307

    Article  CAS  Google Scholar 

  55. Tejedor-Tejedor MI, Anderson MA. Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir, 1990, 6: 602–611

    Article  CAS  Google Scholar 

  56. Russell JD, Parfitt RL, Fraser AR, Farmer VC. Surface structures of gibbsite goethite and phosphate goethite. Nature, 1974, 248: 220–221

    Article  CAS  Google Scholar 

  57. Cornell RM, Giovanoli R. Acid dissolution of hematites of different morphologies. Clay Miner, 1993, 28: 223–232

    Article  CAS  Google Scholar 

  58. Raming TP, Winnubst AJA, van Kats ACM, Philipse AP. The synthesis and magnetic properties of nanosized Hematite (α-Fe2O3) particles. J Colloid Interface Sci, 2002, 249: 346–350

    Article  CAS  Google Scholar 

  59. Torardi CC, Reiff WM, Takacs L. Synthesis, crystal structure, and magnetism of Fe4(OH)3(PO4)3 and V4O(OH)2(PO4)3: Chains of M 2O9 dimers connected by hydroxyl groups. J Solid State Chem, 1989, 82: 203–215

    Article  CAS  Google Scholar 

  60. Lyubutin IS, Lin CR, Korzhetskiy YV, Dmitrieva TV, Chiang RK. Mössbauer spectroscopy and magnetic properties of hematite/magnetite nanocomposites. J Appl Phys, 2009, 106: 034311-1–034311-6

    Article  Google Scholar 

  61. Gao YH, Bao YP, Beerman M, Yasuhara A, Shindo D, Krishnan KM. Superstructures of self-assembled cobalt nanocrystals. Appl Phys Lett, 2004, 84: 3361–3363

    Article  CAS  Google Scholar 

  62. Berkowitz AE, Lahut JA, Jacobs IS, Levinson LM, Forester DW. Spin pinning at ferrite-organic interfaces. Phys Rev Lett, 1975, 34: 594–597

    Article  CAS  Google Scholar 

  63. Kodama RH, Berkowitz AE, McNiff EJ, Foner S. Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett, 1996, 77: 394–397

    Article  CAS  Google Scholar 

  64. Zhao YM, Dunnill CW, Zhu YQ, Gregory DH, Kockenberger W, Li YH, Hu WB, Ahmad I, McCartney DG. Low-temperature magnetic properties of hematite nanorods. Chem Mater, 2007, 19: 916–921

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChunTing Liu or Ji Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Ma, J. & Liu, Y. Formation mechanism and magnetic properties of three different hematite nanostructures synthesized by one-step hydrothermal procedure. Sci. China Chem. 54, 1607–1614 (2011). https://doi.org/10.1007/s11426-011-4392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4392-x

Keywords

Navigation