Skip to main content
Log in

Effect of the pore size of Co/SBA-15 isomorphically substituted with zirconium on its catalytic performance in Fischer-Tropsch synthesis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Cobalt catalysts supported on a series of mesoporous SBA-15 materials isomorphically substituted with zirconium (Zr/Si atomic ratio = 1/20) with different pore sizes (5.7 nm, 7.8 nm, 11.6 nm, 17.6 nm) have been synthesized. The catalysts were characterized by transmission electron microscopy, 29Si solid state magic angle spinning (MAS) NMR, N2 adsorption-desorption measurements, X-ray powder diffraction, X-ray photoelectron spectroscopy, H2-temperature programmed reduction, H2-temperature programmed desorption and O2 titrations. The results indicated that larger pore size led to weaker interactions between cobalt and the supports which lowered the temperature of both reduction steps (Co3O4→CoO and CoO→Co0). The catalytic performances of the catalysts in Fischer-Tropsch synthesis (FTS) were tested in a fixed bed reactor. It was found that the FTS catalytic activity and product selectivity depended strongly on the pore size of the catalysts. The catalyst with a pore size of 7.8 nm showed the best FTS activity, and the catalyst with a pore size of 17.6 nm showed the highest selectivity to C12–C20 and C20+ hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khodakov AY, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev, 2007, 107: 1692–1744

    Article  CAS  Google Scholar 

  2. Iglesia E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl Catal A: Gen, 1997, 161: 59–78

    Article  CAS  Google Scholar 

  3. Barbier A, Tuel A, Arcon I, Kodre A, Martin GA. Characterization and catalytic behavior of Co/SiO2 catalysts: Influence of dispersion in the Fischer-Tropsch reaction. J Catal, 2001, 200: 106–116

    Article  CAS  Google Scholar 

  4. Iglesia E, Soled SL, Fiato RA. Fischer-Tropsch synthesis on cobalt and ruthenium: Metal dispersion and support effects on reaction rate and selectivity. J Catal, 1992, 137: 212–224

    Article  CAS  Google Scholar 

  5. Saib AM, Claeys M, Steen EV. Silica supported cobalt Fischer-Tropsch catalysts: Effect of pore diameter of support. Catal Today, 2002, 71: 395–402

    Article  CAS  Google Scholar 

  6. Xiong HF, Zhang YH, Liew KY, Li JL. Fischer-Tropsch synthesis: The role of pore size for Co/SBA-15 catalysts. J Mol Catal A, 2008, 295: 68–76

    Article  CAS  Google Scholar 

  7. Zhang Y, Shinoda M, Tsubaki N. Development of bimodal cobalt catalysts for Fischer-Tropsch synthesis. Catal Today, 2004, 93: 55–63

    Article  Google Scholar 

  8. Lapszewicz JA, Loeh HJ, Chipperfield JR. The effect of catalyst porosity on methane selectivity in the Fischer-Tropsch reaction. J Chem Soc, Chem Commun, 1993, 913–914

  9. Patzlaff J, Liu Y, Graffmann C, Gaube J. Studies on product distributions of iron and cobalt catalyzed Fischer-Tropsch synthesis. Appl Catal A: Gen, 1999, 186: 109–119

    Article  CAS  Google Scholar 

  10. Zhao D, Feng J, Huo Q. Triblock copolymer synthesis of mesopororous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279: 548–552

    Article  CAS  Google Scholar 

  11. Martínez A, López C, Márquez F, Díaz I. Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: The influence of metal loading, cobalt precursor, and promoters. J Catal, 2003, 220: 486–499

    Article  Google Scholar 

  12. Ohtsuka Y, Takahashi Y, Noguchi M, Arai T, Takasaki S, Tsubouchi N, Wang Y. Novel utilization of mesoporous molecular sieves as supports of cobalt catalysts in Fischer-Tropsch synthesis. Catal Today, 2004, 89: 419–429

    Article  CAS  Google Scholar 

  13. Anderson RB, Hall WK, Krieg A, Seligman B. Studies of the Fischer-Tropsch synthesis. V. Activities and surface areas of reduced and carburized cobalt catalysts. J Am Chem Soc, 1949, 71: 183–188

    Article  CAS  Google Scholar 

  14. Khodakov AY, Constant AG, Bechara R, Zholobenko VL. Pore size effects in Fischer-Tropsch synthesis over cobalt-supported mesoporous silicas. J Catal, 2002, 206: 230–241

    Article  CAS  Google Scholar 

  15. Ali S, Chen B, Goodwin Jr. JG. Zr Promotion of Co/SiO2 for Fischer-Tropsch synthesis. J Catal, 1995, 157: 35–41

    Article  CAS  Google Scholar 

  16. Liu YC, Chen JG, Fang KG, Wang YL, Sun YH. A large pore-size mesoporous zirconia supported cobalt catalyst with good performance in Fischer-Tropsch synthesis. Catal Commun, 2007, 8: 945–949

    Article  CAS  Google Scholar 

  17. Wei MD, Okabe K, Arakawa H, Teraoka Y. Synthesis and characterization of zirconium containing mesoporous silicates and the utilization as support of cobalt catalysts for Fischer-Tropsch synthesis. Catal Commun, 2004, 5: 597–603

    Article  CAS  Google Scholar 

  18. Liu YY, Hanaoka T, Murata K, Okabe K, Takahara I, Sakanishi K. Synthesis of Zr-containing FSM-16 as an effective support for Co catalyst in the Fischer-Tropsch synthesis. React Kinet Catal Lett, 2007, 92: 147–154

    Article  CAS  Google Scholar 

  19. Liu YY, Murata K, Okabe K, Hanaoka T, Sakanishi K. Synthesis of Zr-grafted SBA-15 as an effective support for cobalt catalyst in Fischer-Tropsch synthesis. Chem Lett, 2008, 37: 984–985

    Article  CAS  Google Scholar 

  20. Tao CL, Li JL, Zhang YH, Liew KR. Effect of isomorphic substitution of zirconium on mesoporous silica as support for Cobalt Fischer-Tropsch synthesis catalysts. J Mol Catal A, 2001, 331: 50–57

    Google Scholar 

  21. Newalkar BL, Olanrewaju J, Komarneni S. Microwave-hydrothermal synthesis and characterization of zirconium substituted SBA-15 mesoporous silica. J Phys Chem B, 2001, 105: 8356–8360

    Article  CAS  Google Scholar 

  22. Hilmen AM, Schanke D, Hanssen KF, Holmen A. Study of the effect of water on alumina supported cobalt Fischer-Tropsch catalysts. Appl Catal A: Gen, 1999, 186: 169–188

    Article  CAS  Google Scholar 

  23. Song DC, Li JL. Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer-Tropsch catalysts. J Mol Catal A, 2006, 247: 206–212

    Article  CAS  Google Scholar 

  24. Chen SY, Jang LY, Cheng S. Synthesis of Zr-Incorporated SBA-15 mesoporous materials in a self-generated acidic environment. Chem Mater, 2004, 16: 4174–4180

    Article  CAS  Google Scholar 

  25. Brunauer S, Deming LS, Deming WS, Teller E. On a theory of the van der Waals adsorption of gases. J Am Chem Soc, 1940, 62: 1723–1732

    Article  CAS  Google Scholar 

  26. Castner DG, Watson PR, Chan IY. X-ray adsorption spectroscopy, X-ray photoelectron spectroscopy, and analytical electron microscopy studies of cobalt catalysts. J Phys Chem, 1990, 94: 819–828

    Article  CAS  Google Scholar 

  27. Barr TL. Recent advances in X-ray photoelectron spectroscopy studies of oxides. J Vac Sci Technol A, 1991, 9: 1793–1805

    Article  CAS  Google Scholar 

  28. Jacobs G, Chaney JA, Patterson PM, Das TK, Davis BH. Fischer-Tropsch synthesis: Study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ EXAFS/XANES of Co K and Re LIII edges and XPS. Appl Catal A: Gen, 2004, 264: 203–212

    Article  CAS  Google Scholar 

  29. Girardon JS, Lermontov AS, Gengembre L, Chernavskii PA, Constant AG, Khodakov AY. Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts. J Catal, 2005, 230: 339–352

    Article  CAS  Google Scholar 

  30. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc, 2006, 128: 3956–3964

    Article  CAS  Google Scholar 

  31. Iglesia E, Soled SL, Baumgartner JE, Reyes SC. Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis. J Catal, 1995, 153: 108–122

    Article  CAS  Google Scholar 

  32. Khodakov AY, Griboval-Constant A, Bechara R, Vilain F. Pore-size control of cobalt dispersion and reducibility in mesoporous silicas. J Phys Chem B, 2001, 105: 9805–9811

    Article  CAS  Google Scholar 

  33. Panpranot J, Goodwin Jr. JG, Sayari A. CO hydrogenation on Ru-promoted Co/MCM-41 catalysts. J Catal, 2002, 211: 530–539

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinLin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, C., Li, J. & Liew, K.Y. Effect of the pore size of Co/SBA-15 isomorphically substituted with zirconium on its catalytic performance in Fischer-Tropsch synthesis. Sci. China Chem. 53, 2551–2559 (2010). https://doi.org/10.1007/s11426-010-4165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4165-y

Keywords

Navigation