The planar Lp dual Minkowski problem


In this paper we study the Lpq-dual Minkowski problem for the case p < 0 < q. We prove for any positive smooth function f on \(\mathbb{S}^{1}\), there exists an F: ℝ+ → ℝ, such that if F(q) < p < 0 or 0 < q < −F(−p) then there is a smooth and strictly convex body solving the planar Lpq-dual Minkowski problem.

This is a preview of subscription content, log in to check access.


  1. 1

    Aleksandrov A D. Existence and uniqueness of a convex surface with a given integral curvature. C R (Doklady) Acad Sci URSS (NS), 1942, 35: 131–134

    MathSciNet  MATH  Google Scholar 

  2. 2

    Andrews B. Classification of limiting shapes for isotropic curve flows. J Amer Math Soc, 2002, 16: 443–460

    MathSciNet  Article  Google Scholar 

  3. 3

    Böröczky K, Henk M, Pollehn H. Subspace concentration of dual curvature measures of symmetric convex bodies. J Differential Geom, 2018, 109: 411–429

    MathSciNet  Article  Google Scholar 

  4. 4

    Böröczky K, Lutwak E, Yang D, et al. The dual Minkowski problem for symmetric convex bodies. Adv Math, 2019, 356: 106805

    MathSciNet  Article  Google Scholar 

  5. 5

    Caffarelli L A. Interior W2,p estimates for solutions of the Monge-Ampère equation. Ann of Math (2), 1990, 131: 135–150

    MathSciNet  Article  Google Scholar 

  6. 6

    Chen C, Huang Y, Zhao Y. Smooth solutions to the Lp dual Minkowski problem. Math Ann, 2019, 373: 953–976

    MathSciNet  Article  Google Scholar 

  7. 7

    Chen H, Li Q R. The Lp dual Minkowski problem and related parabolic flows.

  8. 8

    Chen S, Li Q R. On the planar dual Minkowski problem. Adv Math, 2018, 333: 87–117

    MathSciNet  Article  Google Scholar 

  9. 9

    Cheng S Y, Yau S T. On the regularity of the solution of the n-dimensional Minkowski problem. Comm Pure Appl Math, 1976, 29: 495–516

    MathSciNet  Article  Google Scholar 

  10. 10

    Guan P F, Li J F, Li Y Y. Hypersurfaces of prescribed curvature measure. Duke Math J, 2012, 161: 1927–1942

    MathSciNet  Article  Google Scholar 

  11. 11

    Guan P F, Ma X N. The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation. Invent Math, 2003, 151: 553–577

    MathSciNet  Article  Google Scholar 

  12. 12

    Huang Y, Lutwak E, Yang D, et al. Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math, 2016, 216: 325–388

    MathSciNet  Article  Google Scholar 

  13. 13

    Li Q R, Sheng W, Wang X J. Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems. J Eur Math Soc (JEMS), 2020, 22: 893–923

    MathSciNet  Article  Google Scholar 

  14. 14

    Lutwak E, Yang D, Zhang G. Lp dual curvature measures. Adv Math, 2018, 329: 85–132

    MathSciNet  Article  Google Scholar 

  15. 15

    Nirenberg L. The Weyl and Minkowski problems in differential geometry in the large. Comm Pure Appl Math, 1953, 6: 337–394

    MathSciNet  Article  Google Scholar 

  16. 16

    Pogorelov A V. Extrinsic Geometry of Convex Surfaces. Translations of Mathematical Monographs, vol. 35. Providence: Amer Math Soc, 1973

    Google Scholar 

  17. 17

    Pogorelov A V. The Minkowski Multidimensional Problem. Washington DC: V H Winston & Sons, 1978

    Google Scholar 

  18. 18

    Zhao Y. Existence of solutions to the even dual Minkowski problem. J Differential Geom, 2018, 110: 543–572

    MathSciNet  Article  Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (Grant Nos. 11971424 and 11571304).

Author information



Corresponding author

Correspondence to Weimin Sheng.

Additional information

In Memory of Professor Zhengguo Bai (1916–2015)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sheng, W., Xia, S. The planar Lp dual Minkowski problem. Sci. China Math. (2020).

Download citation


  • Lp dual Minkowski type problem
  • elliptic PDE
  • degree theory


  • 35K96
  • 53C44