Abstract
In this paper, we consider the stability, semi-stability and canonical metric structures on transverse Higgs bundles over a class of foliation manifolds, also a transversal Bogomolov inequality is obtained.
This is a preview of subscription content, access via your institution.
References
- 1
Bando S, Siu Y T. Stable sheaves and Einstein-Hermitian metrics. In: Geometry and Analysis on Complex Manifolds. Singapore: World Scientific, 1994, 39–50
- 2
Baraglia D, Hekmati P. A foliated Hitchin-Kobayashi correspondence. arXiv:1802.09699, 2018
- 3
Bartolomeis P D, Tian G. Stability of complex vector bundles. J Differential Geom, 1996, 43: 232–275
- 4
Biquard O. Sur les fibres paraboliques sur une surface complexe. J Lond Math Soc (2), 1996, 53: 302–316
- 5
Biswas I, Kasuya H. Higgs bundles and flat connections over compact Sasakian manifolds. arXiv:1905.06178, 2019
- 6
Biswas I, Mj M. Higgs bundles on Sasakian manifolds. Int Math Res Not IMRN, 2018, 11: 3490–3506
- 7
Biswas I, Schumacher G. Vector bundles on Sasakian manifolds. Adv Theor Math Phys, 2010, 14: 541–561
- 8
Bogomolov F A. Holomorphic tensors and vector bundles on projective varieties. Math USSR Izv, 1979, 13: 499–555
- 9
Boyer C P, Galicki K. On Sasakian-Einstein geometry. Internat J Math, 2000, 11: 873–909
- 10
Boyer C P, Galicki K. New Einstein metrics in dimension five. J Differential Geom, 2001, 57: 443–463
- 11
Boyer C P, Galicki K. Sasakian Geometry. Oxford Mathematical Monographs. Oxford: Oxford University Press, 2008
- 12
Boyer C P, Galicki K, Simanca R. Canonical Sasakian metrics. Comm Math Phys, 2008, 279: 705–733
- 13
Bradlow S B. Vortices in holomorphic line bundles over closed Kähler manifolds. Comm Math Phys, 1990, 135: 1–17
- 14
Bruzzo U, Otero B G. Metrics on semistable and numerically effective Higgs bundles. J Reine Angew Math, 2007, 612: 59–79
- 15
Buchdahl N P. Hermitian-Einstein connections and stable vector bundles over compact complex surfaces. Math Ann, 1988, 280: 625–648
- 16
Campana F, Flenner H. A characterization of ample vector bundles on a curve. Math Ann, 1990, 287: 571–575
- 17
Cardona S A. Approximate Hermitian-Yang-Mills structures and semistability for Higgs bundles. I: Generalities and the one-dimensional case. Ann Global Anal Geom, 2012, 42: 349–370
- 18
Collins T C, Székelyhidi G. K-semistability for irregular Sasakian manifolds. J Differential Geom, 2018, 109: 81–109
- 19
Collins T C, Székelyhidi G. Sasaki-Einstein metrics and K-stability. Geom Topol, 2019, 23: 1339–1413
- 20
Corlette K. Flat G-bundles with canonical metrics. J Differential Geom, 1988, 28: 361–382
- 21
Donaldson S K. Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc Lond Math Soc (3), 1985, 50: 1–26
- 22
Donaldson S K. Infinite determinants, stable bundles and curvature. Duke Math J, 1987, 54: 231–247
- 23
Donaldson S K. Twisted harmonic maps and the self-duality equations. Proc Lond Math Soc (3), 1987, 55: 127–131
- 24
El Kacimi-Alaoui A. Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications. Compos Math, 1990, 79: 57–106
- 25
Feng K, Zheng T. Transverse fully nonlinear equations on Sasakian manifolds and applications. Adv Math, 2019, 357: 106830
- 26
Futaki A, Ono H, Wang G. Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds. J Differential Geom, 2009, 83: 585–635
- 27
Gauduchon P. La 1-forme de torsion d’une variété hermitienne compacte. Math Ann, 1984, 267: 495–518
- 28
Gauntlett J P, Martelli D, Spark J, et al. Sasaki-Einstein metrics on S2 × S3. Adv Theor Math Phys, 2004, 8: 711–734
- 29
Gauntlett J P, Martelli D, Spark J, et al. A new infinite class of Sasaki-Einstein manifolds. Adv Theor Math Phys, 2004, 8: 987–1000
- 30
Gauntlett J P, Martelli D, Spark J, et al. Obstructions to the existence of Sasaki-Einstein metrics. Comm Math Phys, 2007, 273: 803–827
- 31
Griffiths P A. Hermitian differential geometry, Chern classes, and positive vector bundles. In: Global Analysis. Tokyo: University of Tokyo Press, 1969, 185–251
- 32
Guan P F, Zhang X. Regularity of the geodesic equation in the space of Sasakian metrics. Adv Math, 2012, 230: 321–371
- 33
He W Y, Sun S. Frankel conjecture and Sasaki geometry. Adv Math, 2016, 291: 912–960
- 34
Hitchin N J. The self-duality equations on a Riemann surface. Proc Lond Math Soc (3), 1987, 55: 59–126
- 35
Jacob A. Existence of approximate Hermitian-Einstein structures on semi-stable bundles. Asian J Math, 2014, 18: 859–883
- 36
Kobayashi S. Curvature and stability of vector bundles. Proc Japan Acad Ser A Math Sci, 1982, 58: 158–162
- 37
Kobayashi S. Differential Geometry of Complex Vector Bundles. Publications of the Mathematical Society of Japan, vol. 15. Princeton: Princeton University Press, 1987
- 38
Kordyukov Y, Lejmi M, Weber P. Seiberg-Witten invariants on manifolds with Riemannian foliations of codimension 4. J Geom Phys, 2016, 107: 114–135
- 39
Langer A. Bogomolov’s inequality for Higgs sheaves in positive characteristic. Invent Math, 2015, 199: 889–920
- 40
Li J, Yau S T. Hermitian-Yang-Mills connection on non-Kähler manifolds. In: Mathematical Aspects of String Theory. Singapore: World Scientific, 1987, 560–573
- 41
Li J Y, Narasimhan M S. Hermitian-Einstein metrics on parabolic stable bundles. Acta Math Sin Engl Ser, 1999, 15: 93–114
- 42
Li J Y, Zhang C J, Zhang X. Semi-stable Higgs sheaves and Bogomolov type inequality. Calc Var Partial Differential Equations, 2017, 56: 81
- 43
Li J Y, Zhang X. Existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles. Calc Var Partial Differential Equations, 2015, 52: 783–795
- 44
Lübke M. Stability of Einstein-Hermitian vector bundles. Manuscripta Math, 1983, 42: 245–257
- 45
Lübke M, Teleman A. The Kobayashi-Hitchin Correspondence. Singapore: World Scientific, 1995
- 46
Lübke M, Teleman A. The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds. Memoirs of the American Mathematical Society, vol. 183. Providence: Amer Math Soc, 2006
- 47
Maldacena J. The large-N limit of superconformal field theories and supergravity. Internat J Theoret Phys, 1999, 38: 1113–1133
- 48
Martelli D, Sparks J. Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals. Comm Math Phys, 2006, 262: 51–89
- 49
Molino P. Riemannian Foliations. Progress in Mathematics, vol. 73. Boston: Birkhüauser, 1988
- 50
Narasimhan M S, Seshadri C S. Stable and unitary vector bundles on a compact Riemann surface. Ann of Math (2), 1965, 82: 540–567
- 51
Nie Y C, Zhang X. Semistable Higgs bundles over compact Gauduchon manifolds. J Geom Anal, 2018, 28: 627–642
- 52
Rummler H. Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts. Comment Math Helv, 1979, 54: 224–239
- 53
Simpson C T. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J Amer Math Soc, 1988, 1: 867–918
- 54
Simpson C T. Higgs bundles and local systems. Publ Math Inst Hautes Etudes Sci, 1992, 75: 5–95
- 55
Sparks J. Sasaki-Einstein manifolds. Surv Differ Geom, 2011, 16: 265–324
- 56
Takemoto F. Stable vector bundles on algebraic surfaces. Nagoya Math J, 1972, 47: 29–48
- 57
Tondeur P. Geometry of Foliations. Monographs in Mathematics, vol. 90. Basel: Birkhaüuser, 1997
- 58
Uhlenbeck K K, Yau S T. On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Comm Pure Appl Math, 1986, 39: 257–293
- 59
Uhlenbeck K K, Yau S T. A note on our previous paper: On the existence of Hermitian Yang-Mills connections in stable vector bundles. Comm Pure Appl Math, 1989, 42: 703–707
- 60
Zhang C J, Zhang P, Zhang X. Higgs bundles over non-compact Gauduchon manifolds. arXiv:1804.08994, 2018
- 61
Zhang X. Some invariants in Sasakian geometry. Int Math Res Not IMRN, 2011, 2011: 3335–3367
- 62
Zhang X. Energy properness and Sasakian-Einstein metrics. Comm Math Phys, 2011, 306: 229–260
Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant Nos. 11625106, 11571332 and 11721101).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, D., Zhang, X. Higgs bundles over foliation manifolds. Sci. China Math. 64, 399–420 (2021). https://doi.org/10.1007/s11425-019-1736-4
Received:
Accepted:
Published:
Issue Date:
Keywords
- foliation manifold
- Higgs bundle
- (approximate) transverse Hermitian-Einstein
- transversal Bogomolov inequality
MSC(2010)
- 53C07
- 53C12
- 53C25
- 58E15