Skip to main content
Log in

On limiting behavior of stationary measures for stochastic evolution systems with small noise intensity

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The limiting behavior of stochastic evolution processes with small noise intensity ϵ is investigated in distribution-based approaches. Let μϵ be a stationary measure for stochastic process Xϵ with small ϵ and X0 be a semiflow on a Polish space. Assume that {μϵ: 0 < ϵϵ0} is tight. Then all their limits in the weak sense are X0-invariant and their supports are contained in the Birkhoff center of X0. Applications are made to various stochastic evolution systems, including stochastic ordinary differential equations, stochastic partial differential equations, and stochastic functional differential equations driven by Brownian motion or Lévy processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum D. Lévy Processes and Stochastic Calculus. Cambridge: Cambridge University Press, 2009

    MATH  Google Scholar 

  2. Benaïm M. Recursive algorithms, urn processes and chaining number of chain recurrent sets. Ergodic Theory Dynam Systems, 1998, 18: 53–87

    MathSciNet  MATH  Google Scholar 

  3. Benaïm M. Dynamics of stochastic approximation algorithms. In: Séminaire de Probabilités XXXIII. Lecture Notes in Mathematics, vol. 1709. Berlin-Heidelberg: Springer, 1999, 1–68

    Google Scholar 

  4. Benaïm M, Hirsch M W. Stochastic approximation algorithms with constant step size whose average is cooperative. Ann Appl Probab, 1999, 9: 216–241

    MathSciNet  MATH  Google Scholar 

  5. Billingsley P. Convergence of Probability Measures. New York: John Wiley & Sons, 1999

    MATH  Google Scholar 

  6. Bogachev V I, Krylov N V, Röckner M. On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Comm Partial Differential Equations, 2001, 26: 2037–2080

    MathSciNet  MATH  Google Scholar 

  7. Breźniak Z, Liu W, Zhu J. Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise. Nonlinear Anal Real World Appl, 2014, 17: 283–310

    MathSciNet  MATH  Google Scholar 

  8. Chen L, Dong Z, Jiang J, et al. Decomposition formula and stationary measures for stochastic Lotka-Volterra system with applications to turbulent convection. J Math Pures Appl (9), 2019, 125: 43–93

    MathSciNet  MATH  Google Scholar 

  9. Chen X, Jiang J, Niu L. On Lotka-Volterra equations with identical minimal intrinsic growth rate. SIAM J Appl Dyn Syst, 2015, 14: 1558–1599

    MathSciNet  MATH  Google Scholar 

  10. Conley C C. Isolated Invariant Sets and the Morse Index. Providence: Amer Math Soc, 1978

    MATH  Google Scholar 

  11. Cowieson W, Young L-S. SRB measures as zero-noise limits. Ergodic Theory Dynam Systems, 2005, 25: 1115–1138

    MathSciNet  MATH  Google Scholar 

  12. Da Prato G, Zabczyk J. Ergodicity for Infinite Dimensional Systems. Cambridge: Cambridge University Press, 1996

    MATH  Google Scholar 

  13. Dong Z. On the uniqueness of invariant measure of the Burgers equation driven by Lévy processes. J Theoret Probab, 2008, 21: 322–335

    MathSciNet  MATH  Google Scholar 

  14. Dong Z, Xie Y C. Global solutions of stochastic 2D Navier-Stokes equations with Lévy noise. Sci China Ser A, 2009, 52: 1497–1524

    MathSciNet  MATH  Google Scholar 

  15. Dong Z, Xie Y C. Ergodicity of stochastic 2D Navier-Stokes equation with Lévy noise. J Differential Equations, 2011, 251: 196–222

    MathSciNet  MATH  Google Scholar 

  16. Dong Z, Xu T G. One-dimensional stochastic Burgers equation driven by Lévy processes. J Funct Anal, 2007, 243: 631–678

    MathSciNet  MATH  Google Scholar 

  17. Es-Sarhir A, Scheutzow M, van Gaans O. Invariant measures for stochastic functional differential equations with superlinear drift term. Differential Integral Equations, 2010, 23: 189–200

    MathSciNet  MATH  Google Scholar 

  18. Freidlin M I, Wentzell A D. Random Perturbations of Dynamical Systems. New York: Springer, 1998

    MATH  Google Scholar 

  19. Garroni M G, Menaldi J L. Green Functions for Second Order Parabolic Integro-Differential Problems. Boca Raton: Chapman & Hall, 1992

    MATH  Google Scholar 

  20. Haddock J R, Nkashama M N, Wu J. Asymptotic constancy for pseudo monotone dynamical systems on function spaces. J Differential Equations, 1992, 100: 292–311

    MathSciNet  MATH  Google Scholar 

  21. Hairer M, Mattingly J C, Scheutzow M. Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations. Probab Theory Related Fields, 2011, 149: 223–259

    MathSciNet  MATH  Google Scholar 

  22. Hale J K. Asymptotic Behavior of Dissipative Systems. Providence: Amer Math Soc, 1988

    MATH  Google Scholar 

  23. Hirsch M W. Stability and convergence in strongly monotone dynamical systems. J Reine Angew Math, 1988, 383: 1–53

    MathSciNet  MATH  Google Scholar 

  24. Hirsch M W. Systems of differential equations which are competitive or cooperative, III: Competing species. Nonlinearity, 1988, 1: 51–71

    MathSciNet  MATH  Google Scholar 

  25. Hirsch M W. Chain transitive sets for smooth strongly monotone dynamical systems. Dyn Contin Discrete Impuls Syst Ser A Math Anal, 1999, 5: 529–543

    MathSciNet  MATH  Google Scholar 

  26. Hsu S-B. Ordinary Differential Equations with Applications. Singapore: World Scientific, 2006

    MATH  Google Scholar 

  27. Huang W, Ji M, Liu Z, et al. Integral identity and measure estimates for stationary Fokker-Planck equations. Ann Probab, 2015, 43: 1712–1730

    MathSciNet  MATH  Google Scholar 

  28. Huang W, Ji M, Liu Z, et al. Steady states of Fokker-Planck equations, II: Non-existence. J Dynam Differential Equations, 2015, 27: 743–762

    MathSciNet  MATH  Google Scholar 

  29. Huang W, Ji M, Liu Z, et al. Stochastic stability of measures in gradient systems. Phys D, 2016, 314: 9–17

    MathSciNet  MATH  Google Scholar 

  30. Huang W, Ji M, Liu Z, et al. Concentration and limit behaviors of stationary measures. Phys D, 2018, 369: 1–17

    MathSciNet  Google Scholar 

  31. Hwang C-R. Laplace’s method revisited: Weak convergence of probability measures. Ann Probab, 1980, 8: 1177–1182

    MathSciNet  MATH  Google Scholar 

  32. Karatzas I, Shreve S. Brownian Motion and Stochastic Calculus, 2nd ed. New York: Springer-Verlag, 1991

    MATH  Google Scholar 

  33. Khasminskii R Z. Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations. Teor Veroyatn Primen, 1960, 5: 196–214

    MathSciNet  Google Scholar 

  34. Khasminskii R Z. Stochastic Stability of Differential Equations. New York: Springer, 2012

    MATH  Google Scholar 

  35. Li Y, Xie Y C, Zhang X C. Large deviation principle for stochastic heat equation with memory. Discrete Contin Dyn Syst, 2015, 35: 5221–5237

    MathSciNet  MATH  Google Scholar 

  36. Li Y, Yi Y. Systematic measures of biological networks I: Invariant measures and Entropy. Comm Pure Appl Math, 2016, 69: 1777–1811

    MathSciNet  MATH  Google Scholar 

  37. Li Y, Yi Y. Systematic measures of biological networks II: Degeneracy, complexity, and robustness. Comm Pure Appl Math, 2016, 69: 1952–1983

    MathSciNet  MATH  Google Scholar 

  38. Mallet-Paret J, Sell G R. Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions. J Differential Equations, 1996, 125: 385–440

    MathSciNet  MATH  Google Scholar 

  39. Mallet-Paret J, Smith H L. The Poincaré-Bendixson theorem for monotone cyclic feedback systems. J Dynam Differential Equations, 1990, 2: 367–421

    MathSciNet  MATH  Google Scholar 

  40. Mañé R. Ergodic Theory and Differentiable Dynamics. Berlin: Springer-Verlag, 1987

    MATH  Google Scholar 

  41. Mao X R. Stochastic Differential Equations and Applications. Chichester: Horwood Publishing Limited, 2008

    Google Scholar 

  42. Menaldi J-L, Sritharan S S. Stochastic 2-D Navier-Stokes equation. Appl Math Optim, 2002, 46: 31–53

    MathSciNet  MATH  Google Scholar 

  43. Mohammed S E. Stochastic Functional Differential Equations. Melbourne: Pitman Advanced Publishing Program, 1984

    MATH  Google Scholar 

  44. Mumford D. The dawning of the age of stochasticity. In: Mathematics: Frontiers and Perspectives. Providence: Amer Math Soc, 2000, 197–218

    Google Scholar 

  45. Poláčik P. Convergence in smooth strongly monotone flows defined by semilinear parabolic equations. J Differential Equations, 1989, 79: 89–110

    MathSciNet  MATH  Google Scholar 

  46. Temam R. Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics, 1995

    MATH  Google Scholar 

  47. Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer, 2012

    Google Scholar 

  48. van den Driessche P, Zou X F. Global attractivity in delayed Hopfield neural network models. SIAM J Appl Math, 1998, 58: 1878–1890

    MathSciNet  MATH  Google Scholar 

  49. Young L S. What are SRB measures, and which dynamical systems have them? J Stat Phys, 2002, 108: 733–754

    MathSciNet  MATH  Google Scholar 

  50. Zhang X C. Exponential ergodicity of non-Lipschitz stochastic differential equations. Proc Amer Math Soc, 2009, 137: 329–337

    MathSciNet  MATH  Google Scholar 

  51. Zhang X C. On stochastic evolution equations with non-Lipschitz coefficients. Stoch Dyn, 2009, 9: 549–595

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11771295, 11271356, 11371041, 11431014 and 11401557), Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and the Fundamental Research Funds for the Central Universities (Grant No. WK0010000048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jifa Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Dong, Z., Jiang, J. et al. On limiting behavior of stationary measures for stochastic evolution systems with small noise intensity. Sci. China Math. 63, 1463–1504 (2020). https://doi.org/10.1007/s11425-018-9527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9527-1

Keywords

MSC(2010)

Navigation