Skip to main content
Log in

Semi-classical analysis on H-type groups

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we develop semi-classical analysis on H-type groups. We define semi-classical pseudodi fferential operators, prove the boundedness of their action on square integrable functions and develop a symbolic calculus. Then, we define the semi-classical measures of bounded families of square integrable functions which consist of a pair formed by a measure defined on the product of the group and its unitary dual, and by a field of trace class positive operators acting on the Hilbert spaces of the representations. We illustrate the theory by analyzing examples, which show in particular that this semi-classical analysis takes into account thefinite-dimensional representations of the group, even though they are negligible with respect to the Plancherel measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anantharaman N, Faure F, Fermanian Kammerer C. Chaos Quantique. Palaiseau: École Polytechnique, 2014

    Google Scholar 

  2. Anantharaman N, Macia F. The dynamics of the Schrödinger flow from the point of view of semiclassical measures. In: Spectral Geometry. Proceedings of Symposia in Pure Mathematics, vol. 84. Providence: Amer Math Soc, 2012, 93–116

    Book  MATH  Google Scholar 

  3. Anantharaman N, Macia F. Semiclassical measures for the Schrödinger equation on the torus. J Eur Math Soc (JEMS), 2014, 16: 1253–1288

    Article  MathSciNet  MATH  Google Scholar 

  4. Astengo F, Di Blasio B, Ricci F. Gelfand pairs on the Heisenberg group and Schwartz functions. J Funct Anal, 2009, 256: 1565–1587

    Article  MathSciNet  MATH  Google Scholar 

  5. Bahouri H, Chemin J-Y, Danchin R. A frequency space for the Heisenberg group. ArXiv:1609.03850, 2016

    Google Scholar 

  6. Bahouri H, Chemin J-Y, Danchin R. Tempered distributions and Fourier transform on the Heisenberg group. ArXiv: 1705.02195, 2017

    Google Scholar 

  7. Bahouri H, Chemin J-Y, Gallagher I. Precised Hardy inequalities on Rd and on the Heisenberg group Hd. Séminaire Équations aux Dérivées Partielles de l’École Polytechnique (2004–2005), Exposé XIX, 2005

    MATH  Google Scholar 

  8. Bahouri H, Chemin J-Y, Xu C-J. Trace theorem in Sobolev spaces associated with Hörmander’s vector fields. In: Partial Differential Equations and Their Applications. River Edge: World Sci Publ, 1999, 1–14

    MATH  Google Scholar 

  9. Bahouri H, Chemin J-Y, Xu C-J. Trace theorem on the Heisenberg group on homogeneous hypersurfaces. In: Phase Space Analysis of Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol. 69. Boston: Birkhäuser, 2006, 1–15

    Book  MATH  Google Scholar 

  10. Bahouri H, Chemin J-Y, Xu C-J. Trace theorem on the Heisenberg group. Ann Inst Fourier (Grenoble), 2009, 59: 491–514

    Article  MathSciNet  MATH  Google Scholar 

  11. Bahouri H, Fermanian Kammerer C, Gallagher I. Phase Space Analysis on the Heisenberg Group. Astérisque, vol. 345. Paris: Soc Math France, 2012

    MATH  Google Scholar 

  12. Bahouri H, Fermanian Kammerer C, Gallagher I. Dispersive estimates for the Schrödinger operator on step 2 stratified Lie groups. Anal PDE, 2016, 9: 545–574

    Article  MathSciNet  MATH  Google Scholar 

  13. Bahouri H, Gérard P, Xu C-J. Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg. J Anal Math, 2000, 82: 93–118

    Article  MathSciNet  MATH  Google Scholar 

  14. Beals R, Greiner P. Calculus on Heisenberg Manifolds. Annals of Mathematics Studies, vol. 119. Princeton: Princeton University Press, 1988

    Google Scholar 

  15. Christ M, Geller D, Glowacki P, et al. Pseudodifferential operators on groups with dilations. Duke Math J, 1992, 68: 31–65

    Google Scholar 

  16. Colin de Verdiere Y, Hillairet L, Trélat E. Spectral asymptotics for sub-Riemannian Laplacians. I: Quantum ergodicity and quantum limits in the 3D contact case. Duke Math J, 2018, 167: 109–174

    MATH  Google Scholar 

  17. Damek E, Ricci F. Harmonic analysis on solvable extensions of H-type groups. J Geom Anal, 1992, 2: 213–248

    Article  MathSciNet  MATH  Google Scholar 

  18. Del Hierro M. Dispersive and Strichartz estimates on H-type groups. Studia Math, 2005, 169: 1–20

    Article  MathSciNet  MATH  Google Scholar 

  19. Dixmier J. C*-Algebras. North-Holland Mathematical Library, vol. 15. Amsterdam-New York-Oxford: North-Holland, 1977

    MATH  Google Scholar 

  20. Faraut J, Harzallah K. Deux Cours d’Analyse Harmonique. Progress in Mathematics, vol. 69. Boston: Birkhäuser, 1987

    MATH  Google Scholar 

  21. Fermanian Kammerer C, Fischer V. Defect measures on graded lie groups. ArXiv:1707.04002, 2017

    Google Scholar 

  22. Fermanian Kammerer C, Gérard P. A Landau-Zener formula for non-degenerated involutive codimension 3 crossings. Ann Henri Poincaré, 2003, 4: 513–552

    Article  MathSciNet  MATH  Google Scholar 

  23. Fischer V, Ricci F, Yakimova O. Nilpotent Gelfand pairs and spherical transforms of Schwartz functions I: Rank-one actions on the centre. Math Z, 2012, 271: 221–255

    Article  MathSciNet  MATH  Google Scholar 

  24. Fischer V, Ruzhansky M. Quantization on Nilpotent Lie Groups. Progress in Mathematics, vol. 314. Basel: Birkhäuser, 2016

    Book  MATH  Google Scholar 

  25. Folland G B, Stein E. Hardy Spaces on Homogeneous Groups. Princeton: Princeton University Press, 1982

    MATH  Google Scholar 

  26. Geller D. Analytic Pseudodifferential Operators for the Heisenberg Group and Local Solvability. Mathematical Notes, vol. 37. Princeton: Princeton University Press, 1990

    Book  MATH  Google Scholar 

  27. Gérard P. Mesures semi-classiques et ondes de Bloch. Séminaire Équations aux Dérivées Partielles de l’École Polytechnique (1990–1991), Exposé XVI, 1991

    MATH  Google Scholar 

  28. Gérard P, Leichtnam E. Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math J, 1993, 71: 559–607

    Article  MathSciNet  MATH  Google Scholar 

  29. Gérard P, Markowich P A, Mauser N J, et al. Homogenization limits and Wigner transforms. Comm Pure Appl Math, 1997, 50: 323–379

    Article  MathSciNet  MATH  Google Scholar 

  30. Helffer B. 30 ans d’analyse semi-classique: Bibliographie commentée. http://www.math.u-psud.fr/helffer/histoire2003.ps

    Google Scholar 

  31. Helffer B J, Sjöstrand J. Equation de Schrödinger avec champ magnétique et équation de Harper. In: Lecture Notes in Physics, vol. 345. Berlin: Springer, 1989, 118–198

    Book  MATH  Google Scholar 

  32. Hörmander L. The Weyl calculus of pseudodifferential operators. Comm Pure Appl Math, 1979, 32: 360–444

    Article  MathSciNet  Google Scholar 

  33. Kaplan A. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans Amer Math Soc, 1980, 258: 147–153

    Article  MathSciNet  MATH  Google Scholar 

  34. Korányi A. Some applications of Gelfand pairs in classical analysis. In: Harmonic Analysis and Group Representations. Naples: Liguori, 1982, 333–348

    Google Scholar 

  35. Lévy G. The Fourier transform on 2-step Lie groups. ArXiv:1712.09880, 2017

    Google Scholar 

  36. Lions P-L, Paul T. Sur les mesures de Wigner. Rev Mat Iberoamericana, 1993, 9: 553–618

    Article  Google Scholar 

  37. Mantoiu M, Ruzhansky M. Pseudo-differential operators, Wigner transform andWeyl systems on type I locally compact groups. Doc Math, 2017, 22: 1539–1592

    MathSciNet  MATH  Google Scholar 

  38. Ruzhansky M, Turunen V. On the Fourier analysis of operators on the torus. In: Modern Trends in Pseudo-Differential Operators. Operator Theory: Advances and Applications, vol. 172. Basel: Birkhäuser, 2007, 87–105

    Book  MATH  Google Scholar 

  39. Shubin M L A. Pseudodifferential Operators and Spectral Theory. Springer Series in Soviet Mathematics. Berlin: Springer-Verlag, 1987

    Book  MATH  Google Scholar 

  40. Taylor M E. Noncommutative Microlocal Analysis. I. Memoirs of the American Mathematical Society, vol. 52. Providence: Amer Math Soc, 1984

    Book  MATH  Google Scholar 

  41. Wigner E O. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. New York: Academic Press, 1959

    MATH  Google Scholar 

Download references

Acknowledgements

This paper was written while Clotilde Fermanian Kammerer was visiting Technische Universität München and she thanks the members of the mathematics department of this institution for their kind hospitality, especially Caroline Lasser and Simone Warzel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Fischer.

Additional information

Dedicated to Professor Jean-Yves Chemin on the Occasion of His 60th Birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kammerer, C.F., Fischer, V. Semi-classical analysis on H-type groups. Sci. China Math. 62, 1057–1086 (2019). https://doi.org/10.1007/s11425-018-9515-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9515-6

Keywords

MSC(2010)

Navigation