Skip to main content
Log in

Relative weak mixing is generic

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

A classical result of Halmos asserts that among measure preserving transformations the weak mixing property is generic. We extend Halmos’ result to the collection of ergodic extensions of a fixed, but arbitrary, aperiodic transformation T0. We then use a result of Ornstein and Weiss to extend this relative theorem to the general (countable) amenable group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Connes A, Feldman J, Weiss B. An amenable equivalence relation is generated by a single transformation. Ergodic Theory Dynam Systems, 1981, 1: 431–450

    Article  MathSciNet  MATH  Google Scholar 

  2. Furstenberg H. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J Anal Math, 1977, 31: 204–256

    Article  MATH  Google Scholar 

  3. Glasner E. Ergodic Theory via Joinings. Mathematical Surveys and Monographs. Providence: Amer Math Soc, 2003

    Book  MATH  Google Scholar 

  4. Glasner E, Weiss B. Relative weak mixing is generic. ArXiv:1707.06425, 2017

    Google Scholar 

  5. Halmos P R. In general a measure preserving transformation is mixing. Ann of Math (2), 1944, 45: 786–792

    Article  MathSciNet  MATH  Google Scholar 

  6. Halmos P R. Lectures on Ergodic Theory. Publications of the Mathematical Society of Japan, No. 3. Tokyo: Math Soc Japan, 1956

    Google Scholar 

  7. Ornstein D S, Weiss B. Ergodic theory of amenable group actions, I: The Rohlin lemma. Bull Amer Math Soc (NS), 1980, 2: 161–164

    Article  MathSciNet  MATH  Google Scholar 

  8. Oxtoby J C. Measure and Category, 2nd ed. A Survey of the Analogies Between Topological and Measure Spaces. Graduate Texts in Mathematics, vol. 2. New York-Berlin: Springer-Verlag, 1980

    Google Scholar 

  9. Rokhlin V. A “general” measure-preserving transformation is not mixing (in Russian). Dokl Akad Nauk SSSR (NS), 1948, 60: 349–351

    Google Scholar 

  10. Rudolph D J. Classifying the isometric extensions of a Bernoulli shift. J Anal Math, 1978, 34: 36–60

    Article  MathSciNet  MATH  Google Scholar 

  11. Rudolph D J, Weiss B. Entropy and mixing for amenable group actions. Ann of Math (2), 2000, 151: 1119–1150

    Article  MathSciNet  MATH  Google Scholar 

  12. Schnurr M. Generic properties of extensions. Ergodic Theory Dynam Systems, 2018, in press

    Google Scholar 

  13. Thouvenot J-P. Quelques propriétés des systemes dynamiques qui se décomposent en un produit de deux systemes dont l’un est un schéma de Bernoulli. Israel J Math, 1975, 21: 177–207

    Article  MathSciNet  MATH  Google Scholar 

  14. Zimmer R J. Extensions of ergodic group actions. Illinois J Math, 1976, 20: 373–409

    MathSciNet  MATH  Google Scholar 

  15. Zimmer R J. Ergodic actions with generalized discrete spectrum. Illinois J Math, 1976, 20: 555–588

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Glasner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glasner, E., Weiss, B. Relative weak mixing is generic. Sci. China Math. 62, 69–72 (2019). https://doi.org/10.1007/s11425-018-9390-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9390-4

Keywords

MSC(2010)

Navigation