Skip to main content
Log in

Extremes of threshold-dependent Gaussian processes

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the asymptotic behavior, as \(u\rightarrow\infty\), of \(\text{P}\left\{ {{{\sup }_{t \in [0,T]}}{X_u}(t) > u} \right\}\), where \(X_u(t),t\in[0,T],u>0\) is a family of centered Gaussian processes with continuous trajectories. A key application of our findings concerns \(\text{P}\left\{ {{{\sup }_{t \in [0,T]}}(X(t) + g(t)) > u} \right\}\), as \(u\rightarrow\infty\), for X a centered Gaussian process and g some measurable trend function. Further applications include the approximation of both the ruin time and the ruin probability of the Brownian motion risk model with constant force of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler R, Taylor J. Random Fields and Geometry. Springer Monographs in Mathematics. New York: Springer, 2007

    Google Scholar 

  2. Arendarczyk M. On the asymptotics of supremum distribution for some iterated processes. Extremes, 2017, 20: 451–474

    Article  MathSciNet  MATH  Google Scholar 

  3. Azaïs J, Wschebor M. Level Sets and Extrema of Random Processes and Fields. Hoboken: John Wiley & Sons, 2009

    Book  MATH  Google Scholar 

  4. Bai L. Extremes of α(t)-locally stationary Gaussian processes with non-constant variances. J Math Anal Appl, 2017, 446: 248–263

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai L, Dȩbicki K, Hashorva E, et al. On generalised Piterbarg constants. Methodol Comput Appl Probab, 2018, 20: 137–164

    Article  MathSciNet  MATH  Google Scholar 

  6. Berman S M. Sojourns and extremes of Gaussian processes. Ann Probab, 1974, 2: 999–1026

    Article  MathSciNet  MATH  Google Scholar 

  7. Berman S M. Sojourns and Extremes of Stochastic Processes. The Wadsworth & Brooks/Cole Statistics/Probability Series. Pacific Grove: Wadsworth & Brooks/Cole Advanced Books & Software, 1992

    Google Scholar 

  8. Bingham N H, Goldie C M, Teugels J L. Regular Variation, Volume 27. Cambridge: Cambridge University Press, 1989

    MATH  Google Scholar 

  9. Bischoff W, Miller F, Hashorva E, et al. Asymptotics of a boundary crossing probability of a Brownian bridge with general trend. Methodol Comput Appl Probab, 2003, 5: 271–287

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng D. Excursion probabilities of isotropic and locally isotropic Gaussian random fields on manifolds. Extremes, 2017, 20: 475–487

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng D, Schwartzman A. Distribution of the height of local maxima of Gaussian random fields. Extremes, 2015, 18: 213–240

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng D, Xiao Y. The mean Euler characteristic and excursion probability of Gaussian random fields with stationary increments. Ann Appl Probab, 2016, 26: 722–759

    Article  MathSciNet  MATH  Google Scholar 

  13. Dȩbicki K. A note on LDP for supremum of Gaussian processes over infinite horizon. Statist Probab Lett, 1999, 44: 211–219

    Article  MathSciNet  MATH  Google Scholar 

  14. Dȩbicki K. Ruin probability for Gaussian integrated processes. Stochastic Process Appl, 2002, 98: 151–174

    Article  MathSciNet  MATH  Google Scholar 

  15. Dȩbicki K, Engelke S, Hashorva E. Generalized Pickands constants and stationary max-stable processes. Extremes, 2017, 20: 493–517

    Article  MathSciNet  MATH  Google Scholar 

  16. Dȩbicki K, Hashorva E. On extremal index of max-stable stationary processes. Probab Math Statist, 2017, 37: 299–317

    MathSciNet  MATH  Google Scholar 

  17. Dȩbicki K, Hashorva E, Ji L. Tail asymptotics of supremum of certain Gaussian processes over threshold dependent random intervals. Extremes, 2014, 17: 411–429

    Article  MathSciNet  MATH  Google Scholar 

  18. Dȩbicki K, Hashorva E, Ji L. Gaussian risk model with financial constraints. Scand Actuar J, 2015, 6: 469–481

    Article  MathSciNet  MATH  Google Scholar 

  19. Dȩbicki K, Hashorva E, Ji L. Parisian ruin of self-similar Gaussian risk processes. J Appl Probab, 2015, 52: 688–702

    Article  MathSciNet  MATH  Google Scholar 

  20. Dȩbicki K, Hashorva E, Ji L. Parisian ruin over a finite-time horizon. Sci China Math, 2016, 59: 557–572

    Article  MathSciNet  MATH  Google Scholar 

  21. Dȩbicki K, Hashorva E, Ji L, et al. Extremes of vector-valued Gaussian processes: Exact asymptotics. Stochastic Process Appl, 2015, 125: 4039–4065

    Article  MathSciNet  MATH  Google Scholar 

  22. Dȩbicki K, Hashorva E, Liu P. Ruin probabilities and passage times of γ-reflected Gaussian process with stationary increments. ESAIM Probab Stat, 2017, doi: 10.1051/ps/2017019

    Google Scholar 

  23. Dȩbicki K, Hashorva E, Liu P. Uniform tail approximation of homogenous functionals of Gaussian fields. Adv in Appl Probab, 2017, 49: 1037–1066

    Article  MathSciNet  Google Scholar 

  24. Dȩbicki K, Kosiński K. On the infimum attained by the re ected fractional Brownian motion. Extremes, 2014, 17: 431–446

    Article  MathSciNet  Google Scholar 

  25. Dȩbicki K, Kisowski P. Asymptotics of supremum distribution of α(t)-locally stationary Gaussian processes. Stochastic Process Appl, 2018, 118: 2022–2037

    Article  MathSciNet  MATH  Google Scholar 

  26. Dȩbicki K, Rolski T. A note on transient Gaussian fluid models. Queueing Syst, 2002, 41: 321–342

    Article  MathSciNet  MATH  Google Scholar 

  27. Dȩbicki K, Tabiś K. Extremes of the time-average of stationary Gaussian processes. Stochastic Process Appl, 2011, 121: 2049–2063

    Article  MathSciNet  MATH  Google Scholar 

  28. Dieker A B. Extremes of Gaussian processes over an infinite horizon. Stochastic Process Appl, 2005, 115: 207–248

    Article  MathSciNet  MATH  Google Scholar 

  29. Dieker A B, Mikosch T. Exact simulation of Brown-Resnick random fields at a finite number of locations. Extremes, 2015, 18: 301–314

    Article  MathSciNet  MATH  Google Scholar 

  30. Dieker A B, Yakir B. On asymptotic constants in the theory of Gaussian processes. Bernoulli, 2014, 20: 1600–1619

    Article  MathSciNet  MATH  Google Scholar 

  31. Emanuel D C, Harrison J M, Taylor A J. A diffusion approximation for the ruin function of a risk process with compounding assets. Scand Actuar J, 1975, 4: 240–247

    Article  MathSciNet  MATH  Google Scholar 

  32. Embrechts P, Klüppelberg C, Mikosch T. Modelling Extremal Events. Applications of Mathematics, vol. 33. Berlin: Springer-Verlag, 1997

  33. Geluk J L, de Haan L. Regular Variation, Extensions and Tauberian Theorems. CWI Tract Stichting Mathematisch Centrum, vol. 40. Amsterdam: Centrum Wisk Inform, 1987

  34. Gnedenko B V, Korolyuk V S. Some remarks on the theory of domains of attraction of stable distributions. Dopovidi Akad Nauk Ukrain RSR, 1950, 1950: 275–278

    MathSciNet  Google Scholar 

  35. Harper A J. Bounds on the suprema of Gaussian processes, and omega results for the sum of a random multiplicative function. Ann Appl Probab, 2013, 23: 584–616

    Article  MathSciNet  MATH  Google Scholar 

  36. Harper A J. Pickands’ constant hα does not equal 1/γ(1/α) for small α. Bernoulli, 2017, 23: 582–602

    Article  MathSciNet  Google Scholar 

  37. Harrison J M. Ruin problems with compounding assets. Stochastic Process Appl, 1977, 5: 67–79

    Article  MathSciNet  MATH  Google Scholar 

  38. Hashorva E. Representations of max-stable processes via exponential tilting. Stochastic Process Appl, 2018, doi:10.1016/j.spa.2017.10.003

    Google Scholar 

  39. Hashorva E, Hüsler J. Extremes of Gaussian processes with maximal variance near the boundary points. Methodol Comput Appl Probab, 2000, 2: 255–269

    Article  MathSciNet  MATH  Google Scholar 

  40. Hashorva E, Ji L. Approximation of passage times of γ-reflected processes with FBM input. J Appl Probab, 2014, 51: 713–726

    Article  MathSciNet  MATH  Google Scholar 

  41. Hashorva E, Ji L. Piterbarg theorems for chi-processes with trend. Extremes, 2015, 18: 37–64

    Article  MathSciNet  MATH  Google Scholar 

  42. Hashorva E, Ji L. Extremes of α(t)-locally stationary Gaussian random fields. Trans Amer Math Soc, 2016, 368: 1–26

    Article  MathSciNet  MATH  Google Scholar 

  43. Hashorva E, Ji L, Piterbarg V I. On the supremum of γ-reflected processes with fractional Brownian motion as input. Stochastic Process Appl, 2013, 123: 4111–4127

    Article  MathSciNet  MATH  Google Scholar 

  44. Hüsler J. Extreme values and high boundary crossings of locally stationary Gaussian processes. Ann Probab, 1990, 18: 1141–1158

    Article  MathSciNet  MATH  Google Scholar 

  45. Hüsler J, Piterbarg V I. Extremes of a certain class of Gaussian processes. Stochastic Process Appl, 1999, 83: 257–271

    Article  MathSciNet  MATH  Google Scholar 

  46. Hüsler J, Piterbarg V I. On the ruin probability for physical fractional Brownian motion. Stochastic Process Appl, 2004, 113: 315–332

    Article  MathSciNet  MATH  Google Scholar 

  47. Hüsler J, Piterbarg V I. A limit theorem for the time of ruin in a Gaussian ruin problem. Stochastic Process Appl, 2008, 118: 2014–2021

    Article  MathSciNet  MATH  Google Scholar 

  48. Meyer P A. Probability and Potentials. Waltham: Blaisdell, 1966

    MATH  Google Scholar 

  49. Michna Z. Remarks on pickands constant. Probab Math Statist, 2017, 37: 373–393

    MathSciNet  MATH  Google Scholar 

  50. Pickands III J. Maxima of stationary Gaussian processes. Z Wahrscheinlichkeitstheorie verw Gebiete, 1967, 7: 190–223

    Article  MathSciNet  MATH  Google Scholar 

  51. Pickands III J. Upcrossing probabilities for stationary Gaussian processes. Trans Amer Math Soc, 1969, 145: 51–73

    Article  MathSciNet  MATH  Google Scholar 

  52. Piterbarg V I. On the paper by J. Pickands “Upcrossing probabilities for stationary Gaussian processes”. Vestnik Moskov Univ Ser I Mat Mekh, 1972, 27: 25–30

    MathSciNet  MATH  Google Scholar 

  53. Piterbarg V I. Asymptotic Methods in the Theory of Gaussian Processes and Fields. Translations of Mathematical Monographs, vol. 148. Providence: Amer Math Soc, 1996

  54. Piterbarg V I. Twenty Lectures about Gaussian Processes. London-New York: Atlantic Financial Press, 2015

    MATH  Google Scholar 

  55. Piterbarg V I. High extrema of Gaussian chaos processes. Extremes, 2016, 19: 253–272

    Article  MathSciNet  MATH  Google Scholar 

  56. Piterbarg V I, Prisjažnjuk V P. Asymptotic behavior of the probability of a large excursion for a nonstationary Gaussian process. Teor Verojatnost i Mat Statist, 1978, 18: 121–134

    MathSciNet  Google Scholar 

  57. Piterbarg V I, Stamatovich S. On maximum of Gaussian non-centered fields indexed on smooth manifolds. In: Asymptotic Methods in Probability and Statistics with Applications. Statistics for Industry and Technology. Boston: Birkhäuser, 2001, 189–203

    Google Scholar 

  58. Resnick S I. Heavy-Tail Phenomena. Springer Series in Operations Research and Financial Engineering. New York: Springer, 2007

    Google Scholar 

  59. Shao Q M. Bounds and estimators of a basic constant in extreme value theory of Gaussian processes. Statist Sinica, 1996, 6: 245–258

    MathSciNet  MATH  Google Scholar 

  60. Soulier P. Some Applications of Regular Variation in Probability and Statistics. XXII Escuela Venezolana de Matemáticas. Caracas: Instituto Venezolano de Investígaciones Cientcas, 2009

    Google Scholar 

Download references

Acknowledgements

This work was supported by Swiss National Science Foundation (Grant No. 200021-166274) and the National Science Centre (Poland) (Grant No. 2015/17/B/ST1/01102) (2016–2019). The authors are thankful to the referees for several suggestions which have significantly improved their manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Dȩbicki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Dȩbicki, K., Hashorva, E. et al. Extremes of threshold-dependent Gaussian processes. Sci. China Math. 61, 1971–2002 (2018). https://doi.org/10.1007/s11425-017-9225-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9225-7

Keywords

MSC(2010)

Navigation