Skip to main content
Log in

Stochastic Hamiltonian flows with singular coefficients

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the following stochastic Hamiltonian system in ℝ2d (a second order stochastic differential equation):

$$d{\dot X_t} = b({X_t},{\dot X_t})dt + \sigma ({X_t},{\dot X_t})d{W_t},({X_0},{\dot X_0}) = (x,v) \in \mathbb{R}^{2d},$$

where b(x; v) : ℝ2d → ℝd and σ(x; v): ℝ2d → ℝd ⊗ ℝd are two Borel measurable functions. We show that if σ is bounded and uniformly non-degenerate, and bH 2/3,0 p and ∇σLp for some p > 2(2d+1), where H α, β p is the Bessel potential space with differentiability indices α in x and β in v, then the above stochastic equation admits a unique strong solution so that (x, v) ↦ Zt(x, v) := (Xt, t)(x, v) forms a stochastic homeomorphism flow, and (x, v) ↦ Zt(x, v) is weakly differentiable with ess.supx, v E(supt∈[0, T] |∇Zt(x, v)|q) < ∞ for all q ⩾ 1 and T ⩾ 0. Moreover, we also show the uniqueness of probability measure-valued solutions for kinetic Fokker-Planck equations with rough coefficients by showing the well-posedness of the associated martingale problem and using the superposition principle established by Figalli (2008) and Trevisan (2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bass R, Chen Z-Q. Brownian motion with singular drift. Ann Probab, 2003, 31: 791–817

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergh J, Löfström J. Interpolation Spaces: An Introduction. Berlin: Springer-Verlag, 1976

    Book  MATH  Google Scholar 

  3. Bogachev V I, Krylov N V, Röckner M. On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Comm Partial Differential Equations, 2001, 26: 2037–2080

    Article  MathSciNet  MATH  Google Scholar 

  4. Bogachev V I, Krylov N V, Röckner M. Elliptic and parabolic equations for measures. Russian Math Surveys, 2009, 64: 973–1078

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouchut F. Hypoeliptic regularity in kinetic equations. J Math Pures Appl (9), 2002, 81: 1135–1159

    Article  MathSciNet  MATH  Google Scholar 

  6. Bramanti M, Cupini G, Lanconelli E, et al. Global L p-estimate for degenerate Ornstein-Uhlenbeck operators. Math Z, 2010, 266: 789–816

    Article  MathSciNet  MATH  Google Scholar 

  7. Chaudru de Raynal P E. Strong existence and uniqueness for stochastic differential equation with Hölder drift and degenerate noise. Ann Inst H Poincaré, 2017, 53: 259–286

    Article  MATH  Google Scholar 

  8. Chen Z Q, Zhang X. L p-maximal hypoelliptic regularity of nonlocal kinetic Fokker-Planck operators. ArXiv: 1608.05502, 2016

    Google Scholar 

  9. Cherny A S. On the uniqueness in law and the pathwise uniqueness for stochastic differential equations. Theory Probab Appl, 2006, 46: 483–497

    Google Scholar 

  10. Crippa G, De Lellis C. Estimates and regularity results for the DiPerna-Lions ow. J Reine Angew Math, 2008, 616: 15–46

    MathSciNet  MATH  Google Scholar 

  11. Fedrizzi E, Flandoli F. Noise prevents singularities in linear transport equations. J Funct Anal, 2013, 264: 1329–1354

    Article  MathSciNet  MATH  Google Scholar 

  12. Fedrizzi E, Flandoli F. Hölder flow and differentiability for SDEs with non regular drift. Stoch Anal Appl, 2013, 31: 708–736

    Article  MathSciNet  MATH  Google Scholar 

  13. Fedrizzi E, Flandoli F, Priola E, et al. Regularity of stochastic kinetic equations. ArXiv:1606.01088, 2016

    MATH  Google Scholar 

  14. Figalli A. Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coeffcients. J Funct Anal, 2008, 254: 109–153

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin P. Brownian motion with singular time-dependent drift. J Theoret Probab, 2017, 30: 1499–1538

    Article  MathSciNet  MATH  Google Scholar 

  16. Karatza I, Shreve S E. Brownian Motion and Stochastic Calculus. New York: Springer-Verlag, 1988

    Book  Google Scholar 

  17. Krylov N V. Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Graduate Studies in Mathematics, vol. 96. Providence: Amer Math Soc, 2008

  18. Krylov N V, Röckner M. Strong solutions of stochastic equations with singular time dependent drift. Probab Theory Related Fields, 2005, 131: 154–196

    Article  MathSciNet  MATH  Google Scholar 

  19. Kunita H. Stochastic flows and stochastic differential equations. Cambridge Studies in Advanced Mathematics, vol. 24. Cambridge: Cambridge University Press, 1990

  20. Menoukeu-Pamen O, Meyer-Brandis T, Nilssen T, et al. A variational approach to the construction and Malliavin differentiability of strong solutions of SDE’s. Math Ann, 2013, 357: 761–799

    Article  MathSciNet  MATH  Google Scholar 

  21. Menozzi S. Martingale problems for some degenerate Kolmogorov equations. Stochastic Process Appl, 2017, 128: 756–802

    Article  MathSciNet  MATH  Google Scholar 

  22. Mohammed S E A, Nilssen T, Proske F. Sobolev differentiable stochastic flows for SDEs with singular coeffcients: Applications to the transport equation. Ann Probab, 2015, 43: 1535–1576

    Article  MathSciNet  MATH  Google Scholar 

  23. Priola E. On weak uniqueness for some degenerate SDEs by global Lp-estimate. Potential Anal, 2015, 42: 247–281

    Article  MathSciNet  MATH  Google Scholar 

  24. Röckner M, Zhang X. Weak uniqueness of Fokker-Planck equations with degenerate and bounded coeffcients. C R Math Acad Sci Paris, 2010, 348: 435–438

    Article  MathSciNet  MATH  Google Scholar 

  25. Soize C. The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions. Series on Advances in Mathematics for Applied Sciences, vol. 17. Singapore: World Scientic, 1994

  26. Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press, 1970

    MATH  Google Scholar 

  27. Stroock D, Varadhan S R S. Multidimensional Diffusion Processes. Berlin: Springer-Verlag, 1997

    Book  MATH  Google Scholar 

  28. Talay D. Stochastic Hamiltonian systems: Exponential convergence to the invariant measure and discretization by the implicit Euler scheme. Markov Process Related Fields, 2002, 8: 1–36

    MathSciNet  MATH  Google Scholar 

  29. Trevisan D. Well-posedness of multidimensional diffusion processes with weakly differentiable coeffcients. Electron J Probab, 2016, 21, doi: 10.1214/16-EJP4453

  30. Wang F, Zhang X. Degenerate SDE with Hölder-Dini drift and non-Lipschitz noise coeffcient. SIAM J Math Anal, 2016, 48: 2189–2222

    Article  MathSciNet  MATH  Google Scholar 

  31. Xie L, Zhang X. Sobolev differentiable flows of SDEs with local Sobolev and super-linear growth coeffcients. Ann Probab, 2016, 44: 3661–3687

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang X. Strong solutions of SDEs with singular drift and Sobolev diffusion coeffcients. Stochastic Process Appl, 2005, 115: 1805–1818

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang X. Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coeffcients. Electron J Probab, 2011, 16: 1096–1116

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang X. Stochastic partial differential equations with unbounded and degenerate coeffcients. J Differential Equations, 2011, 250: 1924–1966

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang X. Stochastic differential equations with Sobolev diffusion and singular drift. Ann Appl Probab, 2016, 26: 2697–2732

    Article  MathSciNet  MATH  Google Scholar 

  36. Zvonkin A K. A transformation of the phase space of a diffusion process that removes the drift. Mat Sb, 1974, 93: 129–149

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xicheng Zhang.

Additional information

Dedicated to the 60th Birthday of Professor Michael Röckner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X. Stochastic Hamiltonian flows with singular coefficients. Sci. China Math. 61, 1353–1384 (2018). https://doi.org/10.1007/s11425-017-9127-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9127-0

Keywords

MSC(2010)

Navigation