Coupled modified KdV equations, skew orthogonal polynomials, convergence acceleration algorithms and Laurent property

  • Xiangke Chang
  • Yi He
  • Xingbiao Hu
  • Shihao Li
  • Hon-wah Tam
  • Yingnan Zhang
Articles
  • 13 Downloads

Abstract

In this paper, we show that the coupled modified KdV equations possess rich mathematical structures and some remarkable properties. The connections between the system and skew orthogonal polynomials, convergence acceleration algorithms and Laurent property are discussed in detail.

Keywords

integrable system skew orthogonal polynomial convergence acceleration algorithm Laurent property 

MSC(2010)

37K10 11B83 65B05 42C05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 11331008, 11201469, 11571358 and 11601237), the China Postdoctoral Science Foundation Funded Project (Grant Nos. 2012M510186 and 2013T60761), and the Hong Kong Research Grant Council (Grant No. GRF HKBU 202512).

References

  1. 1.
    Adler M, Forrester P J, Nagao T, et al. Classical skew orthogonal polynomials and random matrices. J Stat Phys, 2000, 99: 141–170MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Beals R, Sattinger D H, Szmigielski J. Multipeakons and the classical moment problem. Adv Math, 2000, 154: 229–257MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Berezanski Y M. The integration of semi-infinite Toda chain by means of inverse spectral problem. Rep Math Phys, 1986, 24: 21–47MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bertola M, Gekhtman M, Szmigielski J. Peakons and Cauchy biorthogonal polynomials. ArXiv:0711.4082, 2007MATHGoogle Scholar
  5. 5.
    Bertola M, Gekhtman M, Szmigielski J. The Cauchy two-matrix model. Comm Math Phys, 2009, 287: 983–1014MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bertola M, Gekhtman M, Szmigielski J. Cauchy biorthogonal polynomials. J Approx Theory, 2010, 162: 832–867MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brezinski C, He Y, Hu X B, et al. Multistep ε-algorithm, shanks’ transformation, and Lotka-Volterra system by Hirota’s method. Math Comp, 2012, 81: 1527–1549MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Brezinski C, Redivo-Zaglia M. Extrapolation Methods. Amsterdam: North-Holland, 1991MATHGoogle Scholar
  9. 9.
    Caieniello E R. Combinatorics and Renormalization in Quantum Field Theory. Mass-London-Amsterdam: Benjamin, 1973Google Scholar
  10. 10.
    Carroll G, Speyer D. The cube recurrence. Electron J Combin, 2004, 11: 1–31MathSciNetMATHGoogle Scholar
  11. 11.
    Chang X K, Chen X M, Hu X B, et al. About several classes of bi-orthogonal polynomials and discrete integrable systems. J Phys A, 2015, 48: 015204MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chang X K, Hu X B, Xin G. Hankel determinant solutions to several discrete integrable system and the Laurent property. SIAM J Discrete Math, 2015, 29: 667–682MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Deift P. Integrable systems and combinatorial theory. Notices Amer Math Soc, 2000, 47: 631–640MathSciNetMATHGoogle Scholar
  14. 14.
    Di Francesco P. Integrable combinatorics. In: XVIIth International Congress on Mathematical Physics. Hackensack: World Scientific, 2014, 29–51Google Scholar
  15. 15.
    Di Francesco P, Kedem R. Q-systems, heaps, paths and cluster positivity. Comm Math Phys, 2010, 293: 727–802MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dyson F J. A class of matrix ensembles. J Math Phys, 1972, 13: 90–97MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Elaydi S. An Introduction to Difference Equations. New York: Springer, 2005MATHGoogle Scholar
  18. 18.
    Fomin S, Zelevinsky A. The Laurent phenomenon. Adv in Appl Math, 2002, 28: 119–144MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Fordy A P, Hone A N W. Discrete integrable systems and poisson algebras from cluster maps. Comm Math Phys, 2014, 325: 527–584MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Ghosh S. Generalized Christoffel-Darboux formula for skew-orthogonal polynomials and random matrix theory. J Phys A, 2006, 39: 8775–8782MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ghosh S. Skew-orthogonal polynomials, differential systems and random matrix theory. J Phys A, 2007, 40: 711–740MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Ghosh S. Generalized Christoffel-Darboux formula for classical skew-orthogoanl polynomials. J Phys A, 2008, 41: 435204MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    He Y, Hu X B, Sun J Q, et al. Convergence acceleration algorithm via an equation related to the lattice Boussinesq equation. SIAM J Sci Comput, 2011, 33: 1234–1245MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Hirota R. “Molecule solutions” of coupled modified KdV equations. J Phys Soc Japan, 1997, 66: 2530–2532MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Hirota R. The Direct Method in Soliton Theory. New York: Cambridge University Press, 2004CrossRefMATHGoogle Scholar
  26. 26.
    Hone A N W, Swart C. Integrality and the Laurent phenomenon for Somos 4 and Somos 5 sequences. Math Proc Cambridge Philos Soc, 2008, 145: 65–86MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Ismail M. Classical and Quantum Orthogonal Polynomials in One Variable. New York: Cambridge University Press, 2009MATHGoogle Scholar
  28. 28.
    Kadomtsev B B, Petviashvili V I. On the stability of solitary waves in weakly dispersing media. Sov Phys Dokl, 1970, 15: 539–541MATHGoogle Scholar
  29. 29.
    Kodama Y. KP solitons, total positivity, and cluster algebras. Proc Natl Acad Sci USA, 2011, 108: 8984–8989MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kodama Y, Pierce V U. Geometry of the Pfaff lattice. Int Math Res Not IMRN, 2007, https://doi.org/10.1093/ imrn/rnm120Google Scholar
  31. 31.
    Korteweg D J, De Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos Mag, 1895, 39: 422–443MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Miki H, Goda H, Tsujimoto S. Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems. SIGMA Symmetry Integrability Geom Methods Appl, 2012, 8: 1–14MathSciNetMATHGoogle Scholar
  33. 33.
    Nagai A, Satsuma J. Discrete soliton equations and convergence acceleration algorithms. Phys Lett A, 1995, 209: 305–312MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Nagai A, Tokihiro T, Satsuma J. The Toda molecule equation and the "-algorithm. Math Comp, 1998, 67: 1565–1575MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Nakamura Y. Applied Integrable Systems (in Japanese). Tokyo: Shokabo, 2000Google Scholar
  36. 36.
    Nakamura Y, Zhedanov A. Special solutions of the Toda chain and combinatorial numbers. J Phys A, 2004, 37: 5849–5862MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Papageorgiou V, Grammaticos B, Ramani A. Integrable lattices and convergence acceleration algorithms. Phys Lett A, 1993, 179: 111–115MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Papageorgiou V, Grammaticos B, Ramani A. Orthogonal polynomial approach to discrete Lax pairs for initial boundary-value problems of the QD algorithm. Lett Math Phys, 1995, 34: 91–101MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Peherstorfer F, Spiridonov V P, Zhedanov A S. Toda chain, Stieltjes function, and orthogonal polynomials. Theoret Math Phys, 2007, 151: 505–528MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Pierce V U. A Riemann-Hilbert problem for skew-orthogonal polynomials. J Comput Appl Math, 2008, 215: 230–241MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Speyer D E. Perfect matchings and the octahedron recurrence. J Algebraic Combin, 2007, 25: 309–348MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Spiridonov V P, Tsujimoto S, Zhedanov A S. Integrable discrete time chains for the Frobenius-Stickelberger-Thiele polynomials. Comm Math Phys, 2007, 272: 139–165MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Sun J Q, Chang X K, He Y, et al. An extended multistep shanks transformation and convergence acceleration algorithm with their convergence and stability analysis. Numer Math, 2013, 125: 785–809MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Tsujimoto S, Kondo K. The molecule solutions of discrete integrable systems and orthogonal polynomials (in Japanese). RIMS Kôkyûroku Bessatsu, 2000, 1170: 1–8MATHGoogle Scholar
  45. 45.
    Tsujimoto S, Nakamura Y, Iwasaki M. The discrete Lotka-Volterra system computes singular values. Inverse Problems, 2001, 17: 53–58MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Vein P, Dale R. Determinants and Their Applications in Methematical Physics. New York: Springer, 1999MATHGoogle Scholar
  47. 47.
    Wynn P. On a device for computing the em(Sn) transformation. Math Tables Aids Comput, 1956, 10: 91–96MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Wynn P. On a Procrustean technique for the numerical transformation of slowly convergent sequences and series. Proc Camb Phil Soc, 1956, 52: 663–671MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiangke Chang
    • 1
    • 2
  • Yi He
    • 3
  • Xingbiao Hu
    • 1
    • 2
  • Shihao Li
    • 1
    • 2
  • Hon-wah Tam
    • 4
  • Yingnan Zhang
    • 5
  1. 1.LSEC, ICMSEC, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
  2. 2.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanChina
  4. 4.Department of Computer ScienceHong Kong Baptist University, Kowloon TongHong KongChina
  5. 5.School of Mathematical SciencesNanjing Normal UniversityNanjingChina

Personalised recommendations