Skip to main content
Log in

The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We establish some existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard equation

$$ - \Delta u = \left( {\int_\Omega {\frac{{{{\left| {u\left( y \right)} \right|}^{2_\mu ^*}}}}{{{{\left| {x - y} \right|}^\mu }}}dy} } \right){\left| u \right|^{2_\mu ^* - 2}}u + \lambda uin\Omega ,$$

, where Ω is a bounded domain of RN with Lipschitz boundary, λ is a real parameter, N ≥ 3, \(2_\mu ^* = \left( {2N - \mu } \right)/\left( {N - 2} \right)\) is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann N. On a periodic Schrödinger equation with nonlocal superlinear part. Math Z, 2004, 248: 423–443

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves C O, Cassani D, Tarsi C, et al. Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in R2. J Differential Equations, 2016, 261: 1933–1972

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves C O, Nóbrega A B, Yang M B. Multi-bump solutions for Choquard equation with deepening potential well. Calc Var Partial Differential Equations, 2016, 55: https://doi.org/10.1007/s00526-016-0984-9

    Google Scholar 

  4. Alves C O, Yang M B. Existence of semiclassical ground state solutions for a generalized Choquard equation. J Differential Equations, 2014, 257: 4133–4164

    Article  MathSciNet  MATH  Google Scholar 

  5. Alves C O, Yang M B. Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method. Proc Roy Soc Edinburgh Sect A, 2016, 146: 23–58

    Article  MathSciNet  MATH  Google Scholar 

  6. Barrios B, Colorado E, Servadei R, et al. A critical fractional equation with concave-convex power nonlinearities. Ann Inst H Poincaré Anal Non Linéaire, 2015, 32: 875–900

    Article  MathSciNet  MATH  Google Scholar 

  7. Brézis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88: 486–490

    Article  MathSciNet  MATH  Google Scholar 

  8. Brézis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun Pure Appl Math, 1983, 36: 437–477

    Article  MathSciNet  MATH  Google Scholar 

  9. Buffoni B, Jeanjean L, Stuart C A. Existence of a nontrivial solution to a strongly indefinite semilinear equation. Proc Amer Math Soc, 1993, 119: 179–186

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao D M, Peng S J. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J Differential Equations, 2003, 193: 424–434

    Article  MathSciNet  MATH  Google Scholar 

  11. Capozzi A, Fortunato D, Palmieri G. An existence result for nonlinear elliptic problems involving critical Sobolev exponent. An Inst H Poincaré Anal Non Linéaire, 1985, 2: 463–470

    Article  MathSciNet  MATH  Google Scholar 

  12. Cerami G, Fortunato D, Struwe M. Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 341–350

    Article  MathSciNet  MATH  Google Scholar 

  13. Cerami G, Solimini S, Struwe M. Some existence results for superlinear elliptic boundary value problems involving critical exponents. J Funct Anal, 1986, 69: 289–306

    Article  MathSciNet  MATH  Google Scholar 

  14. Cingolani S, Clapp M, Secchi S. Multiple solutions to a magnetic nonlinear Choquard equation. Z Angew Math Phys, 2012, 63: 233–248

    Article  MathSciNet  MATH  Google Scholar 

  15. Clapp M, Salazar D. Positive and sign changing solutions to a nonlinear Choquard equation. J Math Anal Appl, 2013, 407: 1–15

    Article  MathSciNet  MATH  Google Scholar 

  16. Ferrero A, Gazzola F. Existence of solutions for singular critical growth semilinear elliptic equations. J Differential Equations, 2001, 177: 494–552

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghimenti M, Van Schaftingen J. Nodal solutions for the Choquard equation. J Funct Anal, 2016, 271: 107–135

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghoussoub N, Yuan C. Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponent. Trans Amer Math Soc, 2000, 352: 5703–5743

    Article  MathSciNet  MATH  Google Scholar 

  19. Janneli E. The role played by space dimension in elliptic critical problems. J Differential Equations, 1999, 156: 407–426

    Article  MathSciNet  Google Scholar 

  20. Lieb E. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud Appl Math, 1976/1977, 57: 93–105

    Article  MathSciNet  MATH  Google Scholar 

  21. Lieb E, Loss M. Analysis. Graduate Studies in Mathematics. Providence: Amer Math Soc, 2001

    Google Scholar 

  22. Lions P. The Choquard equation and related questions. Nonlinear Anal, 1980, 4: 1063–1072

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma L, Zhao L. Classification of positive solitary solutions of the nonlinear Choquard equation. Arch Ration Mech Anal, 2010, 195: 455–467

    Article  MathSciNet  MATH  Google Scholar 

  24. Moroz V, Van Schaftingen J. Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265: 153–184

    Article  MathSciNet  MATH  Google Scholar 

  25. Moroz V, Van Schaftingen J. Existence of groundstates for a class of nonlinear Choquard equations. Trans Amer Math Soc, 2015, 367: 6557–6579

    Article  MathSciNet  MATH  Google Scholar 

  26. Moroz V, Van Schaftingen J. Semi-classical states for the Choquard equation. Calc Var Partial Differential Equations, 2015, 52: 199–235

    Article  MathSciNet  MATH  Google Scholar 

  27. Moroz V, Van Schaftingen J. Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Commun Contemp Math, 2015, 17: 1550005

    Article  MathSciNet  MATH  Google Scholar 

  28. Pekar S. Untersuchungüber die Elektronentheorie der Kristalle. Berlin: Akademie Verlag, 1954

    MATH  Google Scholar 

  29. Penrose R. On gravity’s role in quantum state reduction. Gen Relativity Gravitation, 1996, 28: 581–600

    Article  MathSciNet  MATH  Google Scholar 

  30. Rabinowitz P. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 65. Providence: Amer Math Soc, 1986

  31. Riesz M. L’intégrale de Riemann-Liouville et le probl`eme de Cauchy. Acta Math, 1949, 81: 1–223

    Article  MathSciNet  MATH  Google Scholar 

  32. Schechter M, Zou W M. On the Brézis-Nirenberg problem. Arch Ration Mech Anal, 2010, 197: 337–356

    Article  MathSciNet  MATH  Google Scholar 

  33. Secchi S. A note on Schrödinger-Newton systems with decaying electric potential. Nonlinear Anal, 2010, 72: 3842–3856

    Article  MathSciNet  MATH  Google Scholar 

  34. Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional Laplacian. Trans Amer Math Soc, 2015, 367: 67–102

    Article  MathSciNet  MATH  Google Scholar 

  35. Tan J G. The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc Var Partial Differential Equations, 2011, 42: 21–41

    Article  MathSciNet  MATH  Google Scholar 

  36. Wei J C, Winter M. Strongly interacting bumps for the Schrödinger-Newton equations. J Math Phys, 2009, 50: 012905

    Article  MathSciNet  MATH  Google Scholar 

  37. Willem M. Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Boston: Birkhäuser, 1996

  38. Willem M. Functional Analysis. Fundamentals and Applications. Cornerstones, vol. 14. New York: Birkhäuser/Springer, 2013

  39. Yang M B, Ding Y H. Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part. Commun Pure Appl Anal, 2013, 12: 771–783

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11571317 and 11671364) and Natural Science Foundation of Zhejiang (Grant No. LY15A010010). The authors thank the anonymous referees for their useful comments and suggestions which helped to improve the presentation of the paper greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minbo Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Yang, M. The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation. Sci. China Math. 61, 1219–1242 (2018). https://doi.org/10.1007/s11425-016-9067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-9067-5

Keywords

MSC(2010)

Navigation