Dually flat general spherically symmetric Finsler metrics

Articles
  • 24 Downloads

Abstract

Dually flat Finsler metrics arise from information geometry which has attracted some geometers and statisticians. In this paper, we study dually flat general spherically symmetric Finsler metrics which are defined by a Euclidean metric and two related 1-forms. We give the equivalent conditions for those metrics to be locally dually flat. By solving the equivalent equations, a group of new locally dually flat Finsler metrics is constructed.

Keywords

Finsler metric general spherically symmetric dually flat Euclidean metric 

MSC(2010)

53B40 53C60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant No. 11371209) and K. C. Wong Magna Fund in Ningbo University.

References

  1. 1.
    Amari S-I, Nagaoka H. Methods of Information Geometry. Oxford: Oxford University Press, 2000MATHGoogle Scholar
  2. 2.
    Berwald L. Über eine characteristic Eigenschaft der allgemeinen Räume konstanter Krümmung mit gradlinigen Extremalen. Monatsh Math Phys, 1929, 36: 315–330MathSciNetMATHGoogle Scholar
  3. 3.
    Berwald L. Über die n-dimensionalen Geometrien konstanter Krümmung, in denen die Geraden die Kürzesten sind. Math Z, 1929, 30: 449–469MATHGoogle Scholar
  4. 4.
    Bryant R. Projectively flat Finsler 2-spheres of constant curvature. Selecta Math (NS), 1997, 3: 161–204MathSciNetMATHGoogle Scholar
  5. 5.
    Cheng X Y, Shen Z M, Zhou Y S. On locally dually flat Finsler metrics. Internat J Math, 2010, 21: 1531–1543MathSciNetMATHGoogle Scholar
  6. 6.
    Funk P. Über Geometrien bei denen die Geraden die Kürtzesten sind. Math Ann, 1929, 101: 226–237MathSciNetMATHGoogle Scholar
  7. 7.
    Funk P. Über zweidimensionale Finslersche Räume insbesondere über solche mit geradlinigen Extremalen und positiver konstanter Krümmung. Math Z, 1936, 40: 86–93MathSciNetMATHGoogle Scholar
  8. 8.
    Huang L B, Mo X H. On spherically symmetric Finsler metrics of scalar curvature. J Geom Phys, 2012, 62: 2279–2287MathSciNetMATHGoogle Scholar
  9. 9.
    Huang L B, Mo X H. On some explicit constructions of dually flat Finsler metrics. J Math Anal Appl, 2013, 405: 565–573MathSciNetMATHGoogle Scholar
  10. 10.
    Huang L B, Mo X H. On some dually flat Finsler metrics with orthogonal invariance. Nonlinear Anal, 2014, 108: 214–222MathSciNetMATHGoogle Scholar
  11. 11.
    Jiang J N, Cheng X Y, Tian Y F. On locally dually flat Douglas (α,β)-metrics. Adv Math (China), 2013, 42: 723–730MathSciNetMATHGoogle Scholar
  12. 12.
    Li B L. On dually flat Finsler metrics. Differential Geom Appl, 2013, 31: 718–724MathSciNetMATHGoogle Scholar
  13. 13.
    Liu W F, Li B L. Projectively flat Finsler metrics defined by the Euclidean metric and related 1-forms. Differential Geom Appl, 2016, 46: 14–24MathSciNetMATHGoogle Scholar
  14. 14.
    Mo X H, Solórzano N M, Tenenblat K. On spherically symmetric Finsler metrics with vanishing Douglas curvature. Differential Geom Appl, 2013, 31: 746–758MathSciNetMATHGoogle Scholar
  15. 15.
    Mo X H, Wang X Y. On projectively related spherically symmetric Finsler metric in Rn. Publ Math Debrecen, 2016, 88: 249–259MathSciNetMATHGoogle Scholar
  16. 16.
    Rutz S F. Symmetry in Finsler Spaces. Providence: Amer Math Soc, 1996Google Scholar
  17. 17.
    Sevim E S, Shen Z M, Ulgen S. Spherically symmetric Finsler metrics with constant Ricci and flag curvature. Publ Math Debrecen, 2015, 87: 463–472MathSciNetMATHGoogle Scholar
  18. 18.
    Shen Z M. Riemann-Finsler geometry with applications to information geometry. Chinese Ann Math Ser B, 2006, 27: 73–94MathSciNetMATHGoogle Scholar
  19. 19.
    Tayebi A, Peyghan E, Sadeghi H. On locally dually flat (α,β)-metrics with isotropic S-curvature. Indian J Pure Appl Math, 2012, 43: 521–534MathSciNetMATHGoogle Scholar
  20. 20.
    Tayebi A, Sadeghi H, Peyghan E. On a claßs of locally dually flat (α,β)-metrics. Math Slovaca, 2015, 65: 191–198MathSciNetMATHGoogle Scholar
  21. 21.
    Xia Q L. On locally dually flat (α,β)-metrics. Differential Geom Appl, 2011, 29: 233–243MathSciNetGoogle Scholar
  22. 22.
    Yu C T. On dually flat Randers metrics. Nonlinear Anal, 2014, 95: 146–155MathSciNetMATHGoogle Scholar
  23. 23.
    Yu C T. On dually flat (α,β)-metrics. J Math Anal Appl, 2014, 412: 664–675MathSciNetGoogle Scholar
  24. 24.
    Yu C T. On dually flat general (α,β)-metrics. Differential Geom Appl, 2015, 40: 111–122MathSciNetGoogle Scholar
  25. 25.
    Yu C T, Zhu H. On a new class of Finsler metrics. Differential Geom Appl, 2011, 29: 244–254MathSciNetMATHGoogle Scholar
  26. 26.
    Zhou L F. Spherically symmetric Finsler metric in Rn. Publ Math Debrecen, 2012, 80: 67–77MathSciNetGoogle Scholar
  27. 27.
    Zhou L F. Projective spherically symmetric Finsler metrics with constant flag curvature in Rn. Geom Dedicata, 2012, 158: 353–364MathSciNetMATHGoogle Scholar
  28. 28.
    Zhou L F. The spherically symmetric Finsler metrics with isotropic S-curvature. J Math Anal Appl, 2015, 431: 1008–1021MathSciNetMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsNingbo UniversityNingboChina

Personalised recommendations