Science China Mathematics

, Volume 60, Issue 4, pp 671–684 | Cite as

Isotropic Lagrangian submanifolds in the homogeneous nearly Kähler S3 × S3

  • ZeJun Hu
  • YinShan Zhang


We show that isotropic Lagrangian submanifolds in a 6-dimensional strict nearly Kähler manifold are totally geodesic. Moreover, under some weaker conditions, a complete classification of the J-isotropic Lagrangian submanifolds in the homogeneous nearly Kähler S3 × S3 is also obtained. Here, a Lagrangian submanifold is called J-isotropic, if there exists a function λ, such that g((∇h)(v, v, v), Jv) = λ holds for all unit tangent vector v.


nearly Kähler S3×S3 Lagrangian submanifold isotropic submanifold J-parallel totally geodesic 


53B35 53C30 53C42 53D12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Natural Science Foundation of China (Grant No. 11371330). The authors are greatly indebted to Professor Luc Vrancken for his very helpful suggestions and valuable comments during the period of their working on this project. The authors express their thanks to the referees for their helpful comments.


  1. 1.
    Bolton J, Dillen F, Dioos B, et al. Almost complex surfaces in the nearly Kähler S3 × S3. Tohoku Math J, 2015, 67: 1–17MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bolton J, Vrancken L, Woodward L M. On almost complex curves in the nearly Kähler 6-sphere. Q J Math Oxford Ser, 1994, 45: 407–427CrossRefMATHGoogle Scholar
  3. 3.
    Butruille J B. Classification des variétés approximativement kähleriennes homogènes. Ann Global Anal Geom, 2005, 27: 201–225MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Butruille J B. Homogeneous nearly Kähler manifolds. In: Handbook of Pseudo-Riemannian Geometry and Supersymmetry. IRMA Lectures in Mathematics and Theoretical Physics, vol. 16. Zürich: Eur Math Soc, 2010, 399–423Google Scholar
  5. 5.
    Dillen F, Opozda B, Verstraelen L, et al. On totally real 3-dimensional submanifolds of the nearly Kaehler 6-sphere. Proc Amer Math Soc, 1987, 99: 741–749MathSciNetMATHGoogle Scholar
  6. 6.
    Dillen F, Verstraelen L, Vrancken L. Classification of totally real 3-dimensional submanifolds of S6(1) with K ≥ 1/16. J Math Soc Japan, 1990, 42: 565–584MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dioos B, Li H, Ma H, et al. Flat almost complex surfaces in S3 × S3. Http://, 2014Google Scholar
  8. 8.
    Dioos B, Van der Veken J, Vrancken L. Sequences of harmonic maps in the 3-sphere. Math Nachr, 2015, 288: 2001–2015MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dioos B, Vrancken L, Wang X. Lagrangian submanifolds in the nearly Kähler S3 × S3. ArXiv:1604.05060v1, 2016MATHGoogle Scholar
  10. 10.
    Djorić M, Vrancken L. On J-parallel totally real three-dimensional submanifolds of S6(1). J Geom Phys, 2010, 60: 175–181MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Ejiri N. Totally real submanifolds in a 6-sphere. Proc Amer Math Soc, 1981, 83: 759–763MathSciNetMATHGoogle Scholar
  12. 12.
    Foscolo L, Haskins M. New G2-holonomy cones and exotic nearly Kähler structures on S6 and S3 × S3. ArXiv:1501.07838v2, 2015Google Scholar
  13. 13.
    Gray A. Nearly Kähler manifolds. J Differential Geom, 1970, 4: 283–309CrossRefMATHGoogle Scholar
  14. 14.
    Gray A. The structure of nearly Kähler manifolds. Math Ann, 1976, 223: 233–248MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gutowski J, Ivanov S, Papadopoulos G. Deformations of generalized calibrations and compact non-Kähler manifolds with vanishing first Chern class. Asian J Math, 2003, 7: 39–79MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hu Z, Zhang Y. Rigidity of the almost complex surfaces in the nearly Kähler S3×S3. J Geom Phys, 2016, 100: 80–91MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li H, Wang X. Isotropic Lagrangian submanifolds in complex Euclidean space and complex hyperbolic space. Results Math, 2009, 56: 387–403.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lotay J D. Ruled Lagrangian submanifolds of the 6-sphere. Trans Amer Math Soc, 2011, 363: 2305–2339MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Montiel S, Urbano F. Isotropic totally real submanifolds. Math Z, 1988, 199: 55–60MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Moroianu A, Semmelmann U. Generalized Killing spinors and Lagrangian graphs. Differential Geom Appl, 2014, 37: 141–151MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Nagy P A. Nearly Kähler geometry and Riemannian foliations. Asian J Math, 2002, 6: 481–504MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Nagy P A. On nearly-Kähler geometry. Ann Global Anal Geom, 2002, 22: 167–178MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    O’Neill B. Isotropic and Kähler immersions. Canad J Math, 1965, 17: 905–915MATHGoogle Scholar
  24. 24.
    Schäfer L, Smoczyk K. Decomposition and minimality of Lagrangian submanifolds in nearly Kähler manifolds. Ann Global Anal Geom, 2010, 37: 221–240MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Vrancken L. Some remarks on isotropic submanifolds. Publ Inst Math (NS), 1992, 51: 94–100MathSciNetMATHGoogle Scholar
  26. 26.
    Vrancken L. Special Lagrangian submanifolds of the nearly Kaehler 6-sphere. Glasg Math J, 2003, 45: 415–426MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Wang X, Li H, Vrancken L. Lagrangian submanifolds in 3-dimensional complex space forms with isotropic cubic tensor. Bull Belg Math Soc Simon Stevin, 2011, 18: 431–451MathSciNetMATHGoogle Scholar
  28. 28.
    Zhang Y, Dioos B, Hu Z, et al. Lagrangian submanifolds in the 6-dimensional nearly Kähler manifolds with parallel second fundamental form. J Geom Phys, 2016, 108: 21–37MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsZhengzhou UniversityZhengzhouChina
  2. 2.School of SciencesHenan University of EngineeringZhengzhouChina

Personalised recommendations