Advertisement

Science China Mathematics

, Volume 60, Issue 4, pp 719–734 | Cite as

Orientation-preservation conditions on an iso-parametric FEM in cavitation computation

  • ChunMei Su
  • ZhiPing Li
Articles

Abstract

The orientation-preservation condition, i.e., the Jacobian determinant of the deformation gradient det ∇u being required to be positive, is a natural physical constraint in elasticity as well as in many other fields. It is well known that the constraint can often cause serious difficulties in both theoretical analysis and numerical computation, especially when the material is subject to large deformations. We derive a set of necessary and sufficient conditions for the quadratic iso-parametric finite element interpolation functions of cavity solutions to be orientation preserving on a class of radially symmetric large expansion accommodating triangulations. The result provides a practical quantitative guide for meshing in the neighborhood of a cavity and shows that the orientation-preservation can be achieved with a reasonable number of total degrees of freedom by the quadratic iso-parametric finite element method.

Keywords

orientation-preservation condition iso-parametric FEM cavitation computation nonlinear elasticity 

MSC(2010)

65N30 74B20 74G15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11171008 and 11571022).

References

  1. 1.
    Bai Y, Li Z P. Numerical solution of nonlinear elasticity problems with Lavrentiev phenomenon. Math Models Methods Appl Sci, 2007, 17: 1619–1640MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ball J M. Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos Trans R Soc London Ser A, 1982, 306: 557–611MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ball J M. A version of the fundamental theorem for Young measures. Lecture Notes in Phys, 1989, 344: 207–215MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ball J M, Knowles G. A numerical method for detecting singular minimizers. Numer Math, 1987, 51: 181–197MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chi H, Talischi C, Lopez-Pamies O, et al. Polygonal finite elements for finite elasticity. Int J Numer Meth Engng, 2015, 101: 305–328MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gent A N, Lindley P B. Internal rupture of bonded rubber cylinders in tension. Proc R Soc London Ser A, 1958, 249: 195–205CrossRefGoogle Scholar
  7. 7.
    Henao D. Cavitation, invertibility, and convergence of regularized minimizers in nonlinear elasticity. J Elast, 2009, 94: 55–68MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lavrentiev M. Sur quelques problems du calcul des variations. Ann Math Pure Appl, 1926, 4: 7–28CrossRefGoogle Scholar
  9. 9.
    Li Z P, A numerical method for computing singular minimizers. Numer Math, 1995, 71: 317–330MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lian Y, Li Z P. A dual-parametric finite element method for cavitation in nonlinear elasticity. J Comput Appl Math, 2011, 236: 834–842MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lian Y, Li Z P. A numerical study on cavitations in nonlinear elasticity-defects and configurational forces. Math Models Methods Appl Sci, 2011, 21: 2551–2574MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lian Y, Li Z P. Position and size effects on voids growth in nonlinear elasticity. Int J Fracture, 2012, 173: 147–161CrossRefGoogle Scholar
  13. 13.
    Lopez-Pamies O, Idiart M I, Nakamura T. Cavitation in elastomeric solids: I—A defect-growth theory. J Mech Phys Solids, 2011, 59: 1464–1487MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Müller S. Variational models for microstructure and phase transitions. In: Calculus of Variations and Geometric Evolution Problems. Lecture Notes in Mathematics, vol. 1713. Berlin-Heidelberg: Springer, 1999, 85–210CrossRefGoogle Scholar
  15. 15.
    Müller S, Spector S J. An existence theory for nonlinear elasticity that allows for cavitation. Arch Ration Mech Anal, 1995, 131: 1–66MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Negrón-Marrero P V, Betancourt O. The numerical computation of singular minimizers in two-dimensional elasticity. J Comput Phys, 1994, 113: 291–303MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sivaloganathan J. Uniqueness of regular and singular equilibia for spherically symmetric problems of nonlinear elasticity. Arch Ration Mech Anal, 1986, 96: 97–136MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Sivaloganathan J, Negro-Marrero P V. The Numerical computation of the critical boundary displacement for radial cavitation. Math Mech Solids, 2009, 14: 696–726MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sivaloganathan J, Spector S J. On cavitation, configurational forces and implications for fracture in a nonlinearly elastic material. J Elast, 2002, 67: 25–49MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sivaloganathan J, Spector S J, Tilakraj V. The convergence of regularized minimizers for cavitation problems in nonlinear elasticity. SIAM J Appl Math, 2006, 66: 736–757MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Su C M, Li Z P. A meshing strategy for a quadratic iso-parametric FEM in cavitation computation in nonlinear elasticity. ArXiv:1701.01233, 2017Google Scholar
  22. 22.
    Su C M, Li Z P. Error Analysis of a Dual-parametric Bi-quadratic FEM in Cavitation Computation in Elasticity. SIAM J Numer Anal, 2015, 53: 1629–1649MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Tvergaard V. On cavitation instabilities with interacting voids. Eur J Mech A Solids, 2012, 32: 52–58CrossRefMATHGoogle Scholar
  24. 24.
    Wang Z X, Guo D R. Introduction to Special Functions. Beijing: Peking University Press, 2006Google Scholar
  25. 25.
    Xu X M, Henao D. An efficient numerical method for cavitation in nonlinear elasticity. Math Models Methods Appl Sci, 2011, 21: 1733–1760MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.LMAM, School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations