Skip to main content
Log in

Orientation-preservation conditions on an iso-parametric FEM in cavitation computation

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The orientation-preservation condition, i.e., the Jacobian determinant of the deformation gradient det ∇u being required to be positive, is a natural physical constraint in elasticity as well as in many other fields. It is well known that the constraint can often cause serious difficulties in both theoretical analysis and numerical computation, especially when the material is subject to large deformations. We derive a set of necessary and sufficient conditions for the quadratic iso-parametric finite element interpolation functions of cavity solutions to be orientation preserving on a class of radially symmetric large expansion accommodating triangulations. The result provides a practical quantitative guide for meshing in the neighborhood of a cavity and shows that the orientation-preservation can be achieved with a reasonable number of total degrees of freedom by the quadratic iso-parametric finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai Y, Li Z P. Numerical solution of nonlinear elasticity problems with Lavrentiev phenomenon. Math Models Methods Appl Sci, 2007, 17: 1619–1640

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball J M. Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos Trans R Soc London Ser A, 1982, 306: 557–611

    Article  MathSciNet  MATH  Google Scholar 

  3. Ball J M. A version of the fundamental theorem for Young measures. Lecture Notes in Phys, 1989, 344: 207–215

    Article  MathSciNet  MATH  Google Scholar 

  4. Ball J M, Knowles G. A numerical method for detecting singular minimizers. Numer Math, 1987, 51: 181–197

    Article  MathSciNet  MATH  Google Scholar 

  5. Chi H, Talischi C, Lopez-Pamies O, et al. Polygonal finite elements for finite elasticity. Int J Numer Meth Engng, 2015, 101: 305–328

    Article  MathSciNet  MATH  Google Scholar 

  6. Gent A N, Lindley P B. Internal rupture of bonded rubber cylinders in tension. Proc R Soc London Ser A, 1958, 249: 195–205

    Article  Google Scholar 

  7. Henao D. Cavitation, invertibility, and convergence of regularized minimizers in nonlinear elasticity. J Elast, 2009, 94: 55–68

    Article  MathSciNet  MATH  Google Scholar 

  8. Lavrentiev M. Sur quelques problems du calcul des variations. Ann Math Pure Appl, 1926, 4: 7–28

    Article  Google Scholar 

  9. Li Z P, A numerical method for computing singular minimizers. Numer Math, 1995, 71: 317–330

    Article  MathSciNet  MATH  Google Scholar 

  10. Lian Y, Li Z P. A dual-parametric finite element method for cavitation in nonlinear elasticity. J Comput Appl Math, 2011, 236: 834–842

    Article  MathSciNet  MATH  Google Scholar 

  11. Lian Y, Li Z P. A numerical study on cavitations in nonlinear elasticity-defects and configurational forces. Math Models Methods Appl Sci, 2011, 21: 2551–2574

    Article  MathSciNet  MATH  Google Scholar 

  12. Lian Y, Li Z P. Position and size effects on voids growth in nonlinear elasticity. Int J Fracture, 2012, 173: 147–161

    Article  Google Scholar 

  13. Lopez-Pamies O, Idiart M I, Nakamura T. Cavitation in elastomeric solids: I—A defect-growth theory. J Mech Phys Solids, 2011, 59: 1464–1487

    Article  MathSciNet  MATH  Google Scholar 

  14. Müller S. Variational models for microstructure and phase transitions. In: Calculus of Variations and Geometric Evolution Problems. Lecture Notes in Mathematics, vol. 1713. Berlin-Heidelberg: Springer, 1999, 85–210

    Chapter  Google Scholar 

  15. Müller S, Spector S J. An existence theory for nonlinear elasticity that allows for cavitation. Arch Ration Mech Anal, 1995, 131: 1–66

    Article  MathSciNet  MATH  Google Scholar 

  16. Negrón-Marrero P V, Betancourt O. The numerical computation of singular minimizers in two-dimensional elasticity. J Comput Phys, 1994, 113: 291–303

    Article  MathSciNet  MATH  Google Scholar 

  17. Sivaloganathan J. Uniqueness of regular and singular equilibia for spherically symmetric problems of nonlinear elasticity. Arch Ration Mech Anal, 1986, 96: 97–136

    Article  MathSciNet  MATH  Google Scholar 

  18. Sivaloganathan J, Negro-Marrero P V. The Numerical computation of the critical boundary displacement for radial cavitation. Math Mech Solids, 2009, 14: 696–726

    Article  MathSciNet  MATH  Google Scholar 

  19. Sivaloganathan J, Spector S J. On cavitation, configurational forces and implications for fracture in a nonlinearly elastic material. J Elast, 2002, 67: 25–49

    Article  MathSciNet  MATH  Google Scholar 

  20. Sivaloganathan J, Spector S J, Tilakraj V. The convergence of regularized minimizers for cavitation problems in nonlinear elasticity. SIAM J Appl Math, 2006, 66: 736–757

    Article  MathSciNet  MATH  Google Scholar 

  21. Su C M, Li Z P. A meshing strategy for a quadratic iso-parametric FEM in cavitation computation in nonlinear elasticity. ArXiv:1701.01233, 2017

    Google Scholar 

  22. Su C M, Li Z P. Error Analysis of a Dual-parametric Bi-quadratic FEM in Cavitation Computation in Elasticity. SIAM J Numer Anal, 2015, 53: 1629–1649

    Article  MathSciNet  MATH  Google Scholar 

  23. Tvergaard V. On cavitation instabilities with interacting voids. Eur J Mech A Solids, 2012, 32: 52–58

    Article  MATH  Google Scholar 

  24. Wang Z X, Guo D R. Introduction to Special Functions. Beijing: Peking University Press, 2006

    Google Scholar 

  25. Xu X M, Henao D. An efficient numerical method for cavitation in nonlinear elasticity. Math Models Methods Appl Sci, 2011, 21: 1733–1760

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11171008 and 11571022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiPing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, C., Li, Z. Orientation-preservation conditions on an iso-parametric FEM in cavitation computation. Sci. China Math. 60, 719–734 (2017). https://doi.org/10.1007/s11425-016-0019-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-0019-0

Keywords

MSC(2010)

Navigation