Science China Mathematics

, Volume 60, Issue 4, pp 613–636 | Cite as

A conjectural formula for genus one Gromov-Witten invariants of some local Calabi-Yau n-folds

Articles
  • 45 Downloads

Abstract

We conjecture a formula for the generating function of genus one Gromov-Witten invariants of the local Calabi-Yau manifolds which are the total spaces of splitting bundles over projective spaces. We prove this conjecture in several special cases, and assuming the validity of our conjecture we check the integrality of genus one Bogomol’nyi-Prasad-Sommerfield (BPS) numbers of local Calabi-Yau 5-folds defined by Klemm and Pandharipande.

Keywords

Gromov-Witten invariant virtual localization integrality 

MSC(2010)

14N35 53D45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author thanks Professor Jian Zhou for his great patience and guidance during all the time. The author also thanks Jie Yang, Huijun Fan, Huazhong Ke, Jie Zhou, Xiaobo Zhuang, and Di Yang for helpful discussions. The author especially thanks Jie Zhou for carefully reading an earlier version of the introduction and giving suggestions.

References

  1. 1.
    Aganagic M, Bouchard V, Klemm A. Topological strings and (almost) modular forms. Comm Math Phys, 2008, 277: 771–819MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bershadsky M, Cecotti S, Ooguri H, et al. Holomorphic anomalies in topological field theories. Nuclear Phys B, 1993, 405: 279–304MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bershadsky M, Cecotti S, Ooguri H, et al. Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Comm Math Phys, 1994, 165: 311–427MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Gholampour A, Tseng H-H. On computations of genus 0 two-point descendant Gromov-Witten invariants. Michigan Math J, 2013, 62: 753–768MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Givental A. Elliptic Gromov-Witten invariants and the generalized mirror conjecture. In: Integrable Systems and Algebraic Geometry. River Edge: World Sci Publishing, 1998, 107–155Google Scholar
  6. 6.
    Graber T, Pandharipande R. Localization of virtual classes. Invent Math, 1999, 135: 487–518MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Hu X. Localized Standard Versus Reduced Formula and Genus 1 Local Gromov-Witten Invariants. Int Math Res Not, 2015, 2015: 9921–9990MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Klemm A, Pandharipande R. Enumerative geometry of Calabi-Yau 4-folds. Comm Math Phys, 2008, 281: 621–653MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Klemm A, Zaslow E. Local mirror symmetry at higher genus. AMS/IP Stud Adv Math, 2001, 23: 183–207MathSciNetMATHGoogle Scholar
  10. 10.
    Pandharipande R, Zinger A. Enumerative geometry of Calabi-Yau 5-folds. Adv Stud Pure Math, 2010, 59: 239–288MathSciNetMATHGoogle Scholar
  11. 11.
    Popa A. Two-point Gromov-Witten formulas for symplectic toric manifolds. ArXiv:1206.2703v2, 2012Google Scholar
  12. 12.
    Popa A. The genus one Gromov-Witten invariants of Calabi-Yau complete intersections. Tran Amer Math Soc, 2013, 365: 1149–1181MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Zinger A. Intersections of tautological classes on blowups of moduli spaces of genus-1 curves. Michigan Math J, 2007, 55: 535–560MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Zinger A. The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces. J Amer Math Soc, 2009, 22: 691–737MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Beijing International Center for Mathematical ResearchPeking UniversityBeijingChina

Personalised recommendations