Science China Mathematics

, Volume 60, Issue 4, pp 685–700 | Cite as

Analyzing the general biased data by additive risk model

  • YanFeng Li
  • HuiJuan Ma
  • DeHui Wang
  • Yong Zhou


This paper proposes a unified semiparametric method for the additive risk model under general biased sampling. By using the estimating equation approach, we propose both estimators of the regression parameters and nonparametric function. An advantage is that our approach is still suitable for the lengthbiased data even without the information of the truncation variable. Meanwhile, large sample properties of the proposed estimators are established, including consistency and asymptotic normality. In addition, the finite sample behavior of the proposed methods and the analysis of three groups of real data are given.


additive risk model unified method length-biased data case-cohort design 


62N02 46N60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Institutes of Health of USA (Grant No. R01 HL113548), National Natural Science Foundation of China (Grant Nos. 11271155, 11371168, J1310022, 11571138, 11501241 and 71271128), Science and Technology Research Program of Education Department in Jilin Province for the 12th Five-Year Plan (Grant No. 440020031139), Jilin Province Natural Science Foundation (Grant Nos. 20130101066JC, 20130522102JH and 20150520053JH), the State Key Program of National Natural Science Foundation of China (Grant No. 71331006), National Center for Mathematics and Interdisciplinary Sciences and Shanghai University of Finance and Economics through Project 211 Phase IV and Shanghai Leading Academic Discipline Project A.


  1. 1.
    Addona V, Wolfson DB. A formal test for the stationarity of the incidence rate using data from a prevalent cohort study with follow-up. Lifetime Data Anal, 2006, 12: 267–284MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Andersen P K, Gill R D. Cox’s regression model for counting processes: A large sample study. Ann Statist, 1982, 10: 1100–1120MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Asgharian M, M’Lan C E, Wolfson D B. Length-biased sampling with right censoring: An unconditional approach. J Amer Statist Assoc, 2002, 97: 201–209MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bai F F, Huang J, Zhou Y. Semiparemetric inference for the proportional mean residual life model with right-censored length-biased data. Statist Sinica, 2016, 26: 1129–1158MathSciNetMATHGoogle Scholar
  5. 5.
    Borgan O, Langholz B, Samuelsen S O, et al. Exposure stratified case-cohort designs. Lifetime Data Anal, 2000, 6: 39–58MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Breslow N E, Day N E. Statistical methods in cancer research. Volume II—The design and analysis of cohort studies. IARC Sci Publ, 1987, 82: 1–406Google Scholar
  7. 7.
    Breslow N E, Day N E, Raymond L. Statistical methods in cancer research. Volume IV—Descriptive epidemiology. IARC Sci Publ, 1994, 128: 1–302Google Scholar
  8. 8.
    Chan K C G, Chen Y Q, Di C. Proportional mean residual life model for right-censored length-biased data. Biometrika, 2012, 99: 995–1000MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chen K. Generalized case-cohort sampling. J Roy Statist Soc Ser B, 2001, 63: 791–809MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chen K N, Sun L Q, Tong X W. Analysis of cohort survival data with transformation model. Statist Sinica, 2012, 22: 489–508MathSciNetMATHGoogle Scholar
  11. 11.
    Chen X R, Zhou Y. Quantile regression for right-censored and length-biased data. Acta Math Appl Sin Eng Ser, 2012, 28: 443–462MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chen Y H, Zucker D M. Case-cohort analysis with semiparametric transformation models. J Statist Plann Inference, 2009, 39: 3706–3717MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cox D R, Miller H D. The Theory of Stochastic Processes. London: Chapman and Hall, 1965MATHGoogle Scholar
  14. 14.
    Cox D R, Oakes D. Analysis of Survival Data. Boca Raton: CRC Press, 1984Google Scholar
  15. 15.
    Crowley J, Hu M. Covariance analysis of heart transplant survival data. J Amer Statist Assoc, 1977, 72: 27–36CrossRefGoogle Scholar
  16. 16.
    Eberhardt L L. Transect methods for populations studies. J Wildlife Manag, 1978, 42: 1–31CrossRefGoogle Scholar
  17. 17.
    Fakoor V. On the nonparametirc mean residual life estimator in length-biased sampling. Commun Statist Theory Methods, 2015, 44: 512–519CrossRefMATHGoogle Scholar
  18. 18.
    Huang C Y, Qin J. Composite partial likelihood estimation under length-biased sampling, with application to a prevalent cohort study of dementia. J Amer Statist Assoc, 2012, 107: 946–957MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Huang C Y, Qin J. Semiparametric estimation for the additive hazards model with left-truncated and right-censored data. Biometrika, 2013, 100: 877–888MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hyde J. Testing survival with incomplete observations. In: Biostatistics Casebook. New York: Wiley, 1980, 31–46Google Scholar
  21. 21.
    Kalbfleisch J D, Prentice R L. The Statistical Analysis of Failure Time Data, 2nd ed. New York: Wiley, 2002CrossRefMATHGoogle Scholar
  22. 22.
    Kim J P, Lu W B, Sit T, et al. A unified approach to semiparametric transformation models under general biased sampling schemes. J Amer Statist Assoc, 2013, 108: 217–227MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kulich M, Lin D Y. Additive hazards regression for case-cohort studies. Biometrika, 2000, 87: 73–87MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kulich M, Lin D Y. Improving the efficiency of relative risk estimation in case-cohort studies. J Amer Statist Assoc, 2004, 99: 832–844MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lin D Y, Ying Z. Cox regression with imcomplete covariate measurements. J Amer Stantist Assoc, 1993, 88: 1341–1349CrossRefMATHGoogle Scholar
  26. 26.
    Lin D Y, Ying Z L. Semiparametric analysis of the additive risk model. Biometrika, 1994, 81: 61–71MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Liu H, Qin J, Shen Y. Imputation for semiparametric transformation models with biased-sampling data. Lifetime Data Anal, 2012, 18: 470–503MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Ma H J, Zhang F P, Zhou Y. Composite estimating equation approach for additive risk model with length-biased and right-censored data. Statist Probab Lett, 2015, 96: 45–53MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Miller R, Halpern J. Regression with censored data. Biometrika, 1982, 69: 521–531MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Muttlak H A, McDonald L L. Ranked set sasmpling with size-biased probability of selection. Biometrics, 1990, 46: 435–446MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Onland-Moret N C, van der A D L, van der Schouw Y T, et al. Analysis of case-cohort data: A comparison of different methods. J Clinical Epidemiology, 2007, 60: 350–355CrossRefGoogle Scholar
  32. 32.
    Prentice R L. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika, 1986, 73: 1–11MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Qin J, Shen Y. Statistical method for analyzing right-censored length-biased data under Cox model. Biometrics, 2010, 66: 382–392MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Samuelsen S O, Anestad H, Skrondal A. Stratified case-cohort analysis of general cohort sampling designs. Scand J Statist, 2007, 34: 103–119MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Shen Y, Ning J, Qin J. Analyzing length-biased data with semiparametric transformation and accelerated failure time models. J Amer Statist Assoc, 2009, 104: 1192–1202MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Sun J G, Sun L Q, Flournoy N. Additive hazards model for competing risks analysis of the case-cohort design. Commun Statist Theory Methods, 2004, 33: 351–366MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Therneau T M, Li H Z. Computing the Cox model for case-cohort designs. Lifetime Data Anal, 1999, 5: 99–112CrossRefMATHGoogle Scholar
  38. 38.
    Tsai W Y. Pseudo-partial likelihood for proportional hazards models with biasedsampling data. Biometrika, 2009, 96: 601–615MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    van der Vaart A W, Wellner J A. Weak Convergence and Empirical Processes: With Applications to Statistics. New York: Springer, 1996CrossRefMATHGoogle Scholar
  40. 40.
    Vardi Y. Nonparametric estimation in the presence of length bias. Ann Statist, 1982, 10: 616–620MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Vardi Y. Multiplicative censoring, renewal processes, deconvolution and decreasing density: Nonparametric estimation. Biometrika, 1989, 76: 751–761MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Wang M C. Nonparametric estimation from cross-sectional survival data. J Amer Statist Assoc, 1991, 86: 130–143MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Wang M C. Hazards regression analysis for length-biased data. Biometrika, 1996, 83: 343–354MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Yu J C, Shi Y Y, Yang Q L, et al. Additive hazards regression under generalized case-cohort sampling. Acta Math Sin Eng Ser, 2014, 30: 251–260MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Zelen M. The randomization and stratification of patients to clinical trials. J Chronic Diseases, 1974, 27: 365–375CrossRefGoogle Scholar
  46. 46.
    Zhou Y. Estimation Method of Generalized Estimating Equations. Beijing: Science Press, 2013Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • YanFeng Li
    • 1
  • HuiJuan Ma
    • 2
  • DeHui Wang
    • 1
  • Yong Zhou
    • 3
    • 4
  1. 1.College of MathematicsJilin UniversityChangchunChina
  2. 2.Department of Biostatistics and BioinformaticsEmory UniversityAtlantaUSA
  3. 3.School of Statistics and ManagementShanghai University of Finance and EconomicsShanghaiChina
  4. 4.Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations