Skip to main content
Log in

Global Optimization of Polynomials over Real Algebraic Sets

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Let f, g1,..., gs be polynomials in R[X1,..., Xn]. Based on topological properties of generalized critical values, the authors propose a method to compute the global infimum f* of f over an arbitrary given real algebraic set V = {x ∈ Rn | g1(x) = 0,..., gs(x) = 0}, where V is not required to be compact or smooth. The authors also generalize this method to solve the problem of optimizing f over a basic closed semi-algebraic set S = {x ∈ Rn | g1(x) ≥ 0,..., gs(x) ≥ 0}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamyar R and Peet M, Polynomial optimization with applications to stability analysis and controlalternatives to sum of squares, Discrete and Continuous Dynamical Systems-Series B, 2015, 20(8): 2383–2417.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmadi A A and Majumdar A, Some applications of polynomial optimization in operations research and real-time decision making, Optimization Letters, 2016, 10(4): 709–729.

    Article  MathSciNet  MATH  Google Scholar 

  3. Qi L and Teo K L, Multivariate polynomial minimization and its application in signal processing, Journal of Global Optimization, 2003, 26(4): 419–433.

    Article  MathSciNet  MATH  Google Scholar 

  4. Kahl F and Henrion D, Globally optimal estimates for geometric reconstruction problems, International Journal of Computer Vision, 2007, 74(1): 3–15.

    Article  Google Scholar 

  5. Nesterov Y, Squared functional systems and optimization problems, High Performance Optimization, Springer, 2000, 405–440.

    MATH  Google Scholar 

  6. Wu W T, On problems involving inequalities, Mathematics-Mechanization Research Preprints, 1992, 7: 103–138.

    Google Scholar 

  7. Wu W T, On zeros of algebraic equations — An application of Ritt principle, Chinese Science Bulletin, 1986, 31(1): 1–5.

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu W T, A zero structure theorem for polynomial-equations-solving and its applications, Mathematics-Mechanization Research Preprints, 1987, 1: 2–12.

    Google Scholar 

  9. Wu W T, A zero structure theorem for polynomial-equations-solving and its applications, European Conference on Computer Algebra, 1987.

    Google Scholar 

  10. Wu W T, On a finiteness theorem about optimization problems, Mathematics-Mechanization Research Preprints, 1992, 81–18.

    Google Scholar 

  11. Wu W T, On a finite kernel theorem for polynomial-type optimization problems and some of its applications, Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, ISSAC’05, (New York, USA), ACM, 2005, 4–4.

    Google Scholar 

  12. Morse A P, The behavior of a function on its critical set, Annals of Mathematics, 1939, 40(1): 62–70.

    Article  MathSciNet  MATH  Google Scholar 

  13. Sard A, The measure of the critical values of differentiable maps, Bulletin of the American Mathematical Society, 1942, 48(1942): 883–890.

    Article  MathSciNet  MATH  Google Scholar 

  14. Sard A, Hausdorff measure of critical images on banach manifolds, American Journal of Mathematics, 1965, 87(1): 158–174.

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu T, Some test problems on applications of Wu’s method in nonlinear programming problems, Chinese Quarterly Journal of Mathematics, 1994, 9(2): 8–17.

    MATH  Google Scholar 

  16. Wu T, On a collision problem, Acta Mathematica Scientia, 1995, 15(Supp.): 32–38.

    Article  MathSciNet  Google Scholar 

  17. Yang L, Recent advances in automated theorem proving on inequalities, Journal of Computer Science & Technology, 1999, 14(5): 434–446.

    Article  MathSciNet  MATH  Google Scholar 

  18. Fang W, Wu T, and Chen J, An algorithm of global optimization for rational functions with rational constraints, Journal of Global Optimization, 2000, 18(3): 211–218.

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang L and Zhang J, A Practical Program of Automated Proving for a Class of Geometric Inequalities, Springer Berlin Heidelberg, 2001, 41–57.

    MATH  Google Scholar 

  20. Xiao S J and Zeng G X, Algorithms for computing the global infimum and minimum of a polynomial function, Science China Mathematics, 2012, 55(4): 881–891.

    Article  MathSciNet  MATH  Google Scholar 

  21. Zeng G and Xiao S, Global minimization of multivariate polynomials using nonstandard methods, Journal of Global Optimization, 2012, 53(3): 391–415.

    Article  MathSciNet  MATH  Google Scholar 

  22. Collins G E, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern, May 20–23, 1975, Springer, 1975, 134–183.

    Google Scholar 

  23. Hong H, An improvement of the projection operator in cylindrical algebraic decomposition, Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC’90, (New York, USA), ACM, 1990, 261–264.

    Chapter  Google Scholar 

  24. Collins G E and Hong H, Partial cylindrical algebraic decomposition for quantifier elimination, Journal of Symbolic Computation, 1991, 12(3): 299–328.

    Article  MathSciNet  MATH  Google Scholar 

  25. Hong H, Simple solution formula construction in cylindrical algebraic decomposition based quantifier elimination, Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC’92, (New York, USA), ACM, 1992, 177–188.

    Google Scholar 

  26. McCallum S, An improved projection operation for cylindrical algebraic decomposition, Quantifier Elimination and Cylindrical Algebraic Decomposition, Eds. by Caviness B F and Johnson J R, Springer Vienna, 1998, 242–268.

    Chapter  MATH  Google Scholar 

  27. McCallum S, On projection in CAD-based quantifier elimination with equational constraint, Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation, ISSAC’99, (New York, USA), ACM, 1999, 145–149.

    Chapter  Google Scholar 

  28. Brown C W, Improved projection for cylindrical algebraic decomposition, Journal of Symbolic Computation, 2001, 32(5): 447–465.

    Article  MathSciNet  MATH  Google Scholar 

  29. Brown C W, QEPCAD B: A program for computing with semi-algebraic sets using CADs, SIGSAM Bull., 2003, 37(4): 97–108.

    Article  MATH  Google Scholar 

  30. Han J, Dai L, and Xia B, Constructing fewer open cells by GCD computation in CAD projection, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC’14, (New York, USA), ACM, 2014, 240–247.

    Google Scholar 

  31. Han J, Jin Z, and Xia B, Proving inequalities and solving global optimization problems via simplified CAD projection, Journal of Symbolic Computation, 2016, 72: 206–230.

    Article  MathSciNet  MATH  Google Scholar 

  32. Han J, Dai L, Hong H, et al., Open weak CAD and its applications, Journal of Symbolic Computation, 2017, 80: 785–816.

    Article  MathSciNet  MATH  Google Scholar 

  33. Basu S, Pollack R, and Roy M F, Algorithms in Real Algebraic Geometry, Springer Berlin Heidelberg, Berlin, 2006.

    Book  MATH  Google Scholar 

  34. Hong H and Safey El Din M, Variant real quantifier elimination: Algorithm and application, Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, ISSAC’09, (New York, USA), ACM, 2009, 183–190.

    Chapter  Google Scholar 

  35. Hong H and Safey El Din M, Variant quantifier elimination, Journal of Symbolic Computation, 2012, 47(7): 883–901, International Symposium on Symbolic and Algebraic Computation (ISSAC 2009).

    Article  MathSciNet  MATH  Google Scholar 

  36. Safey El Din M, Computing the global optimum of a multivariate polynomial over the reals, Proceedings of the Twenty-First International Symposium on Symbolic and Algebraic Computation, ISSAC’08, (New York, NY, USA), ACM, 2008, 71–78.

    Chapter  Google Scholar 

  37. Greuet A and Safey El Din M, Probabilistic algorithm for polynomial optimization over a real algebraic set, SIAM Journal on Optimization, 2014, 24(3): 1313–1343.

    Article  MathSciNet  MATH  Google Scholar 

  38. Lasserre J B, Global optimization with polynomials and the problem of moments, SIAM Journal on Optimization, 2001, 11(3): 796–817.

    Article  MathSciNet  MATH  Google Scholar 

  39. Nie J, Demmel J, and Sturmfels B, Minimizing polynomials via sum of squares over the gradient ideal, Mathematical Programming, 2006, 106(3): 587–606.

    Article  MathSciNet  MATH  Google Scholar 

  40. Demmel J, Nie J, and Powers V, Representations of positive polynomials on noncompact semialgebraic sets via KKT ideals, Journal of Pure and Applied Algebra, 2007, 209(1): 189–200.

    Article  MathSciNet  MATH  Google Scholar 

  41. Nie J, An exact Jacobian SDP relaxation for polynomial optimization, Mathematical Programming, 2013, 137(1–2): 225–255.

    Article  MathSciNet  MATH  Google Scholar 

  42. Schweighofer M, Global optimization of polynomials using gradient tentacles and sums of squares, SIAM Journal on Optimization, 2006, 17(3): 920–942.

    Article  MathSciNet  MATH  Google Scholar 

  43. Hà H V and Phạm T S, Solving polynomial optimization problems via the truncated tangency variety and sums of squares, J. Pure Appl. Algebra, 2009, 213(11): 2167–2176.

    Article  MathSciNet  MATH  Google Scholar 

  44. Hà H V and Phạm T S, Representations of positive polynomials and optimization on noncompact semialgebraic sets, SIAM Journal on Optimization, 2010, 20(6): 3082–3103.

    Article  MathSciNet  MATH  Google Scholar 

  45. Guo F, Safey El Din M, and Zhi L, Global optimization of polynomials using generalized critical values and sums of squares, Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ACM, 2010, 107–114.

    Chapter  MATH  Google Scholar 

  46. Greuet A, Guo F, Safey El Din M, et al., Global optimization of polynomials restricted to a smooth variety using sums of squares, Journal of Symbolic Computation, 2012, 47(5): 503–518.

    Article  MathSciNet  MATH  Google Scholar 

  47. Rabier P J, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Annals of Mathematics, 1997, 647–691.

    MATH  Google Scholar 

  48. Jelonek Z and Kurdyka K, Quantitative generalized Bertini-Sard theorem for smooth affine varieties, Discrete and Computational Geometry, 2005, 34(4): 659–678.

    Article  MathSciNet  MATH  Google Scholar 

  49. Bochnak J, Coste M, and Roy M F, Real Algebraic Geometry, 36, Springer Science and Business Media, 1998.

    Book  MATH  Google Scholar 

  50. Greuel G M and Pfister G, A Singular Introduction to Commutative Algebra, Springer Science and Business Media, 2012.

    MATH  Google Scholar 

  51. Eisenbud D, Commutative Algebra: With a View Toward Algebraic Geometry, 150, Springer New York, 1995.

    Book  MATH  Google Scholar 

  52. Yang Z H, Computation of real radicals and global optimization of polynomials, PhD thesis, University of Chinese Academy of Sciences, 2018.

    Google Scholar 

  53. Valette A and Valette G, A generalized Sard theorem on real closed fields, Mathematische Nachrichten, 2016, 289(5–6): 748–755.

    Article  MathSciNet  MATH  Google Scholar 

  54. Kurdyka K, Orro P, and Simon S, Semialgebraic Sard theorem for generalized critical values, Journal of Differential Geometry, 2000, 56(1): 67–92.

    Article  MathSciNet  MATH  Google Scholar 

  55. Jelonek Z, On the generalized critical values of a polynomial mapping, Manuscripta Mathematica, 2003, 110(2): 145–157.

    Article  MathSciNet  MATH  Google Scholar 

  56. Jelonek Z, On asymptotic critical values and the Rabier theorem, Banach Center Publications, 2004, 1(65): 125–133.

    Article  MathSciNet  MATH  Google Scholar 

  57. Cohen R L, The Topology of Fiber Bundles Lecture Notes, Standford University, San Francisco, 1998.

    Google Scholar 

  58. Cox D, Little J, and O’Shea D, Ideals, Varieties, and Algorithms, Springer, New York, 2007.

    Book  MATH  Google Scholar 

  59. Neuhaus R, Computation of real radicals of polynomial ideals II, Journal of Pure and Applied Algebra, 1998, 124(1): 261–280.

    Article  MathSciNet  MATH  Google Scholar 

  60. Becker E and Neuhaus R, Computation of real radicals of polynomial ideals, Computational Algebraic Geometry, Springer, 1993, 1–20.

    MATH  Google Scholar 

  61. Spang S J, On the Computation of the Real Radical, PhD thesis, Thesis, Technische Universität Kaiserslautern, 2007.

    Google Scholar 

  62. Spang S J, A zero-dimensional approach to compute real radicals, The Computer Science Journal of Moldova, 2008, 16(1): 64–92.

    MathSciNet  MATH  Google Scholar 

  63. Safey El Din M, Yang Z H, and Zhi L, On the complexity of computing real radicals of polynomial systems, Proceedings of the 2018 International Symposium on Symbolic and Algebraic Computation, ISSAC’18, (New York, USA), ACM, 2018, 351–358.

    Chapter  Google Scholar 

  64. Aubry P, Rouillier F, and Safey El Din M, Real solving for positive dimensional systems, Journal of Symbolic Computation, 2002, 34(6): 543–560.

    Article  MathSciNet  MATH  Google Scholar 

  65. Safey El Din M and Schost É, Properness defects of projections and computation of at least one point in each connected component of a real algebraic set, Discrete & Computational Geometry, 2004, 32(3): 417–430.

    MathSciNet  MATH  Google Scholar 

  66. Safey El Din M, Finding sampling points on real hypersurfaces is easier in singular situations, MEGA (Effective Methods in Algebraic Geometry) Electronic Proceedings, 2005.

    Google Scholar 

  67. Safey El Din M, Testing sign conditions on a multivariate polynomial and applications, Mathematics in Computer Science, 2007, 1(1): 177–207.

    Article  MathSciNet  MATH  Google Scholar 

  68. Krick T and Logar A, An algorithm for the computation of the radical of an ideal in the ring of polynomials, International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, Springer, 1991, 195–205.

    Google Scholar 

Download references

Acknowledgement

We would like to thank Mohab Safey El Din for valuable comments and suggestions on the topic of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu Wang.

Additional information

The research is supported by the National Key Research Project of China under Grant No. 2018YFA0306702 and the National Natural Science Foundation of China under Grant No. 11571350.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yang, ZH. & Zhi, L. Global Optimization of Polynomials over Real Algebraic Sets. J Syst Sci Complex 32, 158–184 (2019). https://doi.org/10.1007/s11424-019-8351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-019-8351-5

Keywords

Navigation