Skip to main content
Log in

On the Mechanization of Straightedge and Compass Constructions

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The geometric constructions obtained with only straightedge and compass are famous and play a special role in the development of geometry. On the one hand, the constructibility of figures is a key ingredient in Euclid geometry and, on the other hand, unconstructibility gave birth to famous open problems of the ancient Greece which were unlocked only in the nineteenth century using discoveries in algebra. This paper discusses the mechanization of straightedge and compass constructions. It focuses on the algebraic approaches and presents two methods which are implemented; one is due to Lebesgue and the other one was jointly designed by Gao and Chou. Some links between the algebraic approach of constructions and synthetic geometry are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chemla K and Guo S C, Les neuf chapitres - Le classique mathematique de la Chine ancienne et ses commentaires, Dunod, 2005.

    Google Scholar 

  2. Wu W T, Selected Works of Wen-Tsun Wu, World Scientific, Singapore, 2008.

  3. Wernick W, Triangle constructions with three located points, Mathematics Magazine, 1982, 55: 227–230.

    Article  MathSciNet  MATH  Google Scholar 

  4. Euclidea, Euclidea: Euclidean constructions made fun to olay with, https://www.euclidea.xyz/, 2016–2018.

  5. Laborde J M and Strasser R, Cabri-géométre: A microworld of geometry for guided discovery learning, Zentrablatt Für Didactic der Matematik, 1990, 22(5): 171–177.

    Google Scholar 

  6. Hohenwarter M and Fuchs K, Combination of dynamic geometry, algebra and calculus in the software system geogebra, Computer Algebra Systems and Dynamic Geometry Systems in Mathematics Teaching Conference 2004, Pecs, Hungary, 2004.

    Google Scholar 

  7. Schreck P and Mathis P, Automatic constructibility checking of a corpus of geometric construction problems, Mathematics in Computer Science, 2016, 10(1): 41–56.

    Article  MathSciNet  MATH  Google Scholar 

  8. Connelly H, An extension of triangle constructions from located points, Forum Geometricorum, 2009, 9: 109–112.

    MathSciNet  MATH  Google Scholar 

  9. Hull T C, Solving cubics with creases: The work of Beloch and Lill, The American Mathematical Monthly, 2011, 118(4): 307–315.

    Article  MathSciNet  MATH  Google Scholar 

  10. Justin J, Aspects mathematiques du pliage de papier, L’Ouvert, 1987(47): 1–14.

    Google Scholar 

  11. Alperin R C, A mathematical theory of origami constructions and numbers, New York Journal of Mathematics, 2000, 6(119): 133–148.

    MathSciNet  MATH  Google Scholar 

  12. Ida T, Ghourabi F, and Takahashi K, Formalizing polygonal knot origami, Journal of Symbolic Computation, 2015, 69(1): 93–108.

    Article  MathSciNet  MATH  Google Scholar 

  13. Carréga J C, Théorie des corps - La règle et le compas, Hermann, Paris, 1981.

    MATH  Google Scholar 

  14. Botana F and Recio T, On the unavoidable uncertainty of truth in dynamic geometry proving, Mathematics in Computer Science, 2016, 10(1): 5–25.

    Article  MathSciNet  MATH  Google Scholar 

  15. Schreck P, Automatisation des constructions géométriques à la règle et au compas, PhD thesis, 1993.

    Google Scholar 

  16. Schreck P, Modélisation et implantation d’un système à base de connaissances pour les constructions géométriques, Revue d’Intelligence Artificielle, 1994, 8(3): 223–247.

    Google Scholar 

  17. Stewart I, Galois Theory, 3rd Edition, Chapman Hall, Boca Raton, 2003.

    MATH  Google Scholar 

  18. Mathis P and Schreck P, Determining automatically compass and straightedge unconstructibility in triangles, Eds. by Davenport J H and Ghourabi F, 7th International Symposium on Symbolic Computation in Software Science, SCSS 2016, Tokyo, Japan, March 28–31, 2016, volume 39 of EPiC Series in Computing, pages 130–142, EasyChair, 2016.

    Google Scholar 

  19. Lebesgue H, Leçons sur les constructions géométriques, Gauthier-Villars, Paris, 1950. in French, re-edition by Editions Jacques Gabay, France.

    MATH  Google Scholar 

  20. Chen G T, Les constructions à la règle et au compas par une méthode algébrique, Technical Report Master thesis, Université Louis Pasteur, 1992.

    Google Scholar 

  21. Gao X S and Chou S C, Solving geometric constraint systems, II, A symbolic approach and decision of Rc-constructibility, Computer Aided Design, 1998, 30(2): 115–122.

    Article  Google Scholar 

  22. Landau S Z and Miller G L, Solvability by radicals is in polynomial time, Journal of Computer and System Sciences, 1985, 30(2): 179–208

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu W T, Basic principles of mechanical theorem proving in elementary geometries, Journal of Symbolic Computation, 1984, 4: 207–235.

    MathSciNet  Google Scholar 

  24. Chou S C, An introduction to Wu’s method for mechanical theorem proving in geometry, Journal of Automated Reasoning, 1988, 4: 237–267.

    Article  MathSciNet  MATH  Google Scholar 

  25. Kalkbrener M, A generalized euclidean algorithm for computing triangular representations of algebraic varieties, J. Symbolic Computation, 1993, 15(2): 143–167.

    Article  MathSciNet  MATH  Google Scholar 

  26. Kapur D and Saxena T, Comparison of various multivariate resultant formulations. Ed. by Levelt A H M, Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC’ 95, ACM, Montreal, Canada, July 10–12, 1995, 187–194.

    Chapter  Google Scholar 

  27. Buchberger B and Winkler F, Gröbner Bases and Applications, Cambridge University Press, Cambridge, 1998.

    Book  MATH  Google Scholar 

  28. Kapur D, Automated geometric reasoning: Dixon resultants, gröbner bases, and characteristic sets, Ed. by Wang D M, Automated Deduction in Geometry, International Workshop on Automated Deduction in Geometry, Toulouse, France, September 27–29, 1996, Selected Papers, volume 1360 of Lecture Notes in Computer Science, Springer, 1996, 1–36.

    Google Scholar 

  29. Wang D M, On the connection between ritt characteristic sets and buchberger-gröbner bases, Mathematics in Computer Science, 2016, 10(4): 479–492.

    Article  MathSciNet  MATH  Google Scholar 

  30. Aubry P, Lazard D, and Moreno-Maza M, On the theories of triangular sets, J. Symbolic Computation, 1999, 28(2): 105–124.

    Article  MathSciNet  MATH  Google Scholar 

  31. Lemaire F, Maza M M, and Xie Y Z, The regularchains library in MAPLE, ACM SIGSAM Bulletin, 2005, 39(3): 96–97.

    Article  MATH  Google Scholar 

  32. Hulpke A, Techniques for the computation of galois groups, Eds. by Matzat B H, Greuel G M, and Hiss G, Algorithmic Algebra and Number Theory, Springer Berlin Heidelberg, 1999, 65–77.

    Chapter  Google Scholar 

  33. Meyers L F, Update on William Wernick’s, triangle constructions with three located points, Mathematics Magazine, 1996, 69(1): 46–49.

    MathSciNet  MATH  Google Scholar 

  34. Narboux J and Braun D, Towards a certified version of the encyclopedia of triangle centers, Mathematics in Computer Science, 2016, 10(1): 17.

    Article  MathSciNet  MATH  Google Scholar 

  35. Song D, Wang D M, and Chen X Y, Retrieving geometric information from images: The case of hand-drawn diagrams, Data Min. Knowl. Discov., 2017, 31(4): 934–971.

    Article  MathSciNet  MATH  Google Scholar 

  36. Beeson M, Logic of ruler and compass constructions, Eds. by Cooper S B, Dawar A, and Löwe B, CiE, volume 7318 of Lecture Notes in Computer Science, Springer, 2012, 46–55.

    Google Scholar 

  37. Scandura J M, Durnin J H, and Wulfeck I I W H, Higher order rule characterization of heuristics for compass and straight edge constructions in geometry, Artificial Intelligence, 1974, 5(2): 149–183.

    Article  MATH  Google Scholar 

  38. Polya G, Mathematical Discovery Volume II: On Understanding, Learning, and Teaching Problem Solving, John Wiley and Sons Inc, 1965.

    MATH  Google Scholar 

  39. Buthion M, Un programme qui résout formellement des problèmes de constructions géométriques, RAIRO Informatique, 1979, 13(1): 73–106.

    MathSciNet  MATH  Google Scholar 

  40. Aldefeld B, Variations of geometries based on a geometric-reasoning method, Computer-Aided Design, 1988, 20(3): 117–126.

    Article  MATH  Google Scholar 

  41. Dufourd J F, Mathis P, and Schreck P, Geometric construction by assembling solved subfigures, Artif. Intell., 1998, 99(1): 73–119.

    Article  MathSciNet  MATH  Google Scholar 

  42. Schreck P and Mathis P, Geometrical constraint system decomposition: A multi-group approach, Int. J. Comput. Geometry Appl., 2006, 16(5–6): 431–442.

    Article  MathSciNet  MATH  Google Scholar 

  43. Gao X S, Hoffmann C M, and Yang W Q, Solving spatial basic geometric constraint configurations with locus intersection, Ed. by Seidel H P, Shapiro V, Lee K, et al., Seventh ACM Symposium on Solid Modeling and Applications, Max-Planck-Institut für Informatik, Saarbrücken, ACM, Germany, June 17–21, 2002, 95–104.

    Chapter  Google Scholar 

  44. Marinković V and Janičić P, Towards understanding triangle construction problems. Eds. by Jeuring J, et al., Intelligent Computer Mathematics — CICM 2012, volume 7362 of Lecture Notes in Computer Science, Springer, 2012.

    Google Scholar 

  45. Schreck P, Marinkovic V, and Janicic P, Constructibility classes for triangle location problems, Mathematics in Computer Science, 2016, 10(1): 27–39.

    Article  MathSciNet  MATH  Google Scholar 

  46. Marinkovic V, Janicic P, and Schreck P, Computer theorem proving for verifiable solving of geometric construction problems, Eds. by Botana F and Quaresma P, Automated Deduction in Geometry — 10th International Workshop, ADG 2014, Coimbra, Portugal, July 9–11, 2014, Revised Selected Papers, volume 9201 of Lecture Notes in Computer Science, Springer, 2014, 72–93.

    Google Scholar 

  47. Gulwani S, Korthikanti V A, and Tiwari A, Synthesizing geometry constructions, Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, ACM, PLDI’11, 2011, 50–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Schreck.

Additional information

This research was supported by Strasbourg University and French CNRS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreck, P. On the Mechanization of Straightedge and Compass Constructions. J Syst Sci Complex 32, 124–149 (2019). https://doi.org/10.1007/s11424-019-8347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-019-8347-1

Keywords

Navigation