Optimal Noise Suppression of Phase Damping Quantum Systems via Weak Measurement


One qubit subjected to the effect of phase damping in a two-level quantum system with arbitrary pure initial state is studied in this paper. The aim of this paper is to find the optimal control scheme to correct the qubit back as close as possible to its initial state. The strength-dependent measurements and control correction rotation in different bases are designed to protect the arbitrary pure state of qubit. The authors design the optimal weak measurement strength to achieve the best trade-off between gaining the information of the system and the disturbance through measurement. The authors study the suppression of phase damping in two cases: There is and isn’t the y component in initial state. The authors deduce the optimal parameters and performances of the control schemes for the various initial state situations. Simulation results demonstrate the effectiveness of the proposed control schemes.

This is a preview of subscription content, log in to check access.


  1. [1]

    Cong S, Control of Quantum Systems: Theory and Methods, John Wiley and Sons, Singapore Pte. Ltd. 2014.

    Google Scholar 

  2. [2]

    Cramer J, Kalb N, Rol M A, et al., Repeated quantum error correction on a continuously encoded qubit by real-time feedback, Nature Communications, 2016, 7: 11526.

    Article  Google Scholar 

  3. [3]

    Unden T, Balasubramanian P, Louzon D, et al., Quantum metrology enhanced by repetitive quantum error correction, Physical Review Letters, 2016, 116(23): 230502.

    Article  Google Scholar 

  4. [4]

    Chen M, Kuang S, and Cong S, Rapid Lyapunov control for decoherence-free subspaces of Markovian open quantum systems, J. Franklin Inst., 2017, 354(1): 439–455.

    MathSciNet  Article  Google Scholar 

  5. [5]

    Cong S and Yang F, Control of quantum states in decoherence-free subspaces, J. Phys. A Math. Theor., 2013, 46(7): 75305.

    MathSciNet  Article  Google Scholar 

  6. [6]

    Chan L and Cong S, Phase decoherence suppression in arbitrary n-level atom in-configuration with Bang-Bang controls, Intelligent Control and Automation (WCICA), 2011 9th World Congress on IEEE, 2011, 196–201.

    Google Scholar 

  7. [7]

    Viola L and Lloyd S, Dynamical suppression of decoherence in two-state quantum systems, Phys. Rev. A., 1998, 58(4): 2733–2744.

    MathSciNet  Article  Google Scholar 

  8. [8]

    Carvalho A R R, Reid A J S, and Hope J J, Controlling entanglement by direct quantum feedback, Phys. Rev. A., 2008, 78(1): 12334.

    Article  Google Scholar 

  9. [9]

    Zhang J, Liu Y X, Wu R B, et al., Quantum feedback: Theory, experiments, and applications, Physics Reports, 2017, 679: 1–60.

    MathSciNet  Article  Google Scholar 

  10. [10]

    Zhang J, Wu R B, Li C W, et al., Protecting coherence and entanglement by quantum feedback controls, IEEE Transactions on Automatic Control, 2010, 55(3): 619–633.

    MathSciNet  Article  Google Scholar 

  11. [11]

    Ganesan N and Tarn T J, Decoherence control in open quantum systems via classical feedback, Phys. Rev. A., 2007, 75(3): 32323.

    Article  Google Scholar 

  12. [12]

    Clausen J, Bensky G, and Kurizki G, Path-optimized minimal-energy protection of quantum operations from decoherence, Physical Review Letters, 2010, 104(4): 040401.

    Article  Google Scholar 

  13. [13]

    Braczyk A M, Mendona P E M F, Gilchrist A, et al., Quantum control of a single qubit, Phys. Rev. A., 2007, 75(1): 012329.

    MathSciNet  Article  Google Scholar 

  14. [14]

    Brif C, Chakrabarti R, and Rabitz H, Focus on quantum control, New Journal of Physics, 2009, 11(10): 105030.

    MathSciNet  Article  Google Scholar 

  15. [15]

    Wiseman H M and Doherty A C, Optimal unravellings for feedback control in linear quantum systems, Physical Review Letters, 2005, 94(7): 70405.

    Article  Google Scholar 

  16. [16]

    Wiseman H M and Milburn G J, Quantum Measurement and Control, Cambridge University Press, Cambridge, 2009.

    Google Scholar 

  17. [17]

    Harraz S, Yang J, Li K, et al., Quantum state transfer control based on the optimal measurement, Optim. Control Appl. Methods, 2016, 38(5): 744–753.

    MathSciNet  Article  Google Scholar 

  18. [18]

    Svensson B E Y, Pedagogical review of quantum measurement theory with an emphasis on weak measurements, Quanta, 2013, 2(1): 18–49.

    Article  Google Scholar 

  19. [19]

    Xiao X and Feng M, Reexamination of the feedback control on quantum states via weak measurements, Phys. Rev. A. At. Mol. Opt. Phys., 2011, 83(5): 2622–2627.

    Article  Google Scholar 

  20. [20]

    Gillett G G, Dalton R B, Lanyon B P, et al., Experimental feedback control of quantum systems using weak measurements, Phys. Rev. Lett., 2010, 104(8): 080503.

    Article  Google Scholar 

  21. [21]

    Yang Y, Zhang X Y, Ma J, et al., Extended techniques for feedback control of a single qubit, Phys. Rev. A. At. Mol. Opt. Phys., 2013, 87(1): 790–791.

    Google Scholar 

  22. [22]

    Yan Y, Zou J, Xu B M, et al., Measurement-based direct quantum feedback control in an open quantum system, Phys. Rev. A. At. Mol. Opt. Phys., 2013, 88(3): 032320.

    Article  Google Scholar 

  23. [23]

    Audretsch J, Konrad T, and Scherer A, Sequence of unsharp measurements enabling a real-time visualization of a quantum oscillation, Phys. Rev. A., 2001, 63(5): 52102.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Shuang Cong.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant No. 61573330 and the National Natural Science Foundation of International (Regional) Cooperation and Exchanges Project under Grant No. 61720106009.

This paper was recommended for publication by Editor SUN Jian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harraz, S., Cong, S. & Kuang, S. Optimal Noise Suppression of Phase Damping Quantum Systems via Weak Measurement. J Syst Sci Complex 32, 1264–1279 (2019). https://doi.org/10.1007/s11424-018-7392-5

Download citation


  • Open quantum system
  • optimal noise suppression
  • phase damping
  • quantum system control
  • weak measurement