Skip to main content
Log in

Homogeneous Finite-Time Consensus Control for Higher-Order Multi-Agent Systems by Full Order Sliding Mode

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper investigates the distributed finite-time consensus tracking problem for higher-order nonlinear multi-agent systems (MASs). The distributed finite-time consensus protocol is based on full order sliding surface and super twisting algorithm. The nominal consensus control for the MASs is designed based on the geometric homogeneous finite time control technique. The chattering is avoided by designing a full order sliding surface. The switching control is constructed by integrating super twisting algorithm, hence a chattering alleviation protocol is obtained to maintain a smooth control input. The finite time convergence analysis for the leader follower network is presented by using strict Lyapunov function. Finally, the numerical simulations validate the proposed homogeneous full-order sliding mode control for higher-order MASs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Z, Duan Z, Chen G, et al., Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Transactions on Circuits and Systems I, 2010, 57(1): 213–224.

    Article  MathSciNet  Google Scholar 

  2. Canale E, Dalmao F, Mordecki E, et al., Robustness of cucker smale flocking model, IET Control Theory & Applications, 2015, 9(3): 346–350.

    Article  MathSciNet  Google Scholar 

  3. Weigang L, de Souza B B, Crespo A M F, et al., Decision support system in tactical air traffic flow management for air traffic flow controllers, Journal of Air Transport Management, 2008, 14: 329–336.

    Article  Google Scholar 

  4. Pack D J, DeLima P, Toussaint G J, et al., Cooperative control of UAVs for localization of intermittently emitting mobile targets, IEEE Transactions on Systems Man & Cybernatics Part B, 2009, 39(4): 959–970.

    Article  Google Scholar 

  5. Ghommam J and Saad M, Backstepping-based cooperative and adaptive tracking control design for a group of underactuated AUVs in horizontal plan, International Journal of Control, 2014, 87(5): 1076–1093.

    Article  MathSciNet  MATH  Google Scholar 

  6. Yoon S and Qiao C, Cooperative search and survey using autonomous underwater vehicles (AUVs), IEEE Transactions on Parallel and Distributed Systems, 2011, 22(3): 364–379.

    Article  Google Scholar 

  7. Li T and Zhang J F, Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises, IEEE Transactions on Automatic Control, 2010, 55(9): 2043–2057.

    Article  MathSciNet  MATH  Google Scholar 

  8. Mehrjerdi H, Saad M, and Ghommam J, Hierarchical fuzzy cooperative control and path following for a team of mobile robots, IEEE/ASME Transactions on Mechatronics, 2011, 16(5): 907–917.

    Article  Google Scholar 

  9. Zhao D, Zou T, Li S, et al., Adaptive backstepping sliding mode control for leader-follower multiagent systems, IET Control Theory & Applications, 2011, 6(8): 1109–1117.

    Article  Google Scholar 

  10. Dimarogonas D V, Tsiotras P, and Kyriakopoulos K J, Leader-follower cooperative attitude control of multiple rigid bodies, Systems & Control Letters, 2009, 58: 429–435.

    Article  MathSciNet  MATH  Google Scholar 

  11. Hong Y, Gao L, Cheng D, et al., Lyapunov-based approach to multiagent systems with switching jointly connected interconnection, IEEE Transactions on Automatic Control, 2007, 52(5): 943–948.

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin P and Jia Y, Consensus of second-order discrete-time multiagent systems with nonuniform time-delays and dynamically changing topologies, Automatica, 2009, 45(9): 2154–2158.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghommam J, Mehrjerdi H, and Saad M, Robust formation control without velocity measurement of the leader robot, Control Engineering Practice, 2013, 21: 1143–1156.

    Article  Google Scholar 

  14. Khoo S, Xie L, and Man Z, Robust finite-time consensus tracking algorithm for multirobot systems, IEEE/ASME Transactions on Mechatronics, 2009, 14(2): 219–228.

    Article  Google Scholar 

  15. Ghasemi M, Nersesov S G, Clayton G, et al., Sliding mode coordination control for multiagent systems with underactuated agent dynamics, International Journal of Control, 2014, 87(12): 2612–2633.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghasemi M, Nersesovn S G, and Clayton G, Finite-time tracking using sliding mode control, Journal of the Franklin Institute, 2014, 351(5): 2966–2990.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghasemi M and Nersesov S G, Finite-time coordination in multiagent systems using sliding mode control approach, Automatica, 2014, 50: 1209–1216.

    Article  MathSciNet  MATH  Google Scholar 

  18. He X, Wang Q, and Yu W, Finite-time containment control for second-order multiagent systemsunder directed topology, IEEE Transactions on Circuit and Systems II, 2014, 61(8): 619–623.

    Article  Google Scholar 

  19. Yu S and Long X, Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode, Automatica, 2015, 54: 158–165.

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo W, L J, Chen S, et al., Second-order tracking control for leader-follower multi-agent flocking in directed graphs with switching topology, Systems & Control Letters, 2011, 60: 1051–1058.

    Article  MathSciNet  MATH  Google Scholar 

  21. Cao Y, YuW, RenW, et al., An overview of recent progress in the study of distributed multi-agent, An Overview of Recent Progress in the Study of Distributed Multi-Agent, 2013, 9(1): 427–438.

    Google Scholar 

  22. Wang Z, Zhang W, and Guo Y, Adaptive output consensus tracking of uncertain multi-agent systems, American Control Conference, 2011, 46(13): 3387–3392.

    MathSciNet  Google Scholar 

  23. Moulay E and Perruquetti W, Finite time stability conditions for non autonomous continuous systems, International Journal of Control, 2008, 81(5): 797–803.

    Article  MathSciNet  MATH  Google Scholar 

  24. Levant A, Sliding order and sliding accuracy in sliding mode control, International Journal of Control, 1993, 58(6): 1247–1263.

    Article  MathSciNet  MATH  Google Scholar 

  25. Levant A, Universal single-input single-output (SISO) sliding-mode controllers with finite-time convergence, IEEE Transactions on Automatic Control, 2001, 46(9): 1447–1451.

    Article  MathSciNet  MATH  Google Scholar 

  26. Zuo Z, Nonsingular fixed-time consensus tracking for second-order multi-agent networks, Automatica, 2015, 54: 305–309.

    Article  MathSciNet  MATH  Google Scholar 

  27. Hong Y, Finite-time stabilization and stabilizability of a class of controllable systems, System and Control Letters, 2002, 46: 231–236.

    Article  MathSciNet  MATH  Google Scholar 

  28. Bhat S P and Bernstein D S, Geometric homogeneity with applications to finite-time stability, Math. Control Signals Systems, 2005, 17: 101–127.

    Article  MathSciNet  MATH  Google Scholar 

  29. Defoort M, Floquet T, Kokosy A, et al., A novel higher order sliding mode control scheme, System and Control Letters, 2009, 58: 102–108.

    Article  MathSciNet  MATH  Google Scholar 

  30. Feng Y, Han F, and Yu X, Chattering free full-order sliding-mode control, Automatica, 2014, 50: 1310–1314.

    Article  MathSciNet  MATH  Google Scholar 

  31. Defoort M, Nollet F, Floquet T, et al., A third-order sliding-mode controller for a stepper motor, IEEE Transactions on Industrial Electronics, 2009, 56(9): 3337–3346.

    Article  Google Scholar 

  32. Moreno J A and Osorio M, Strict lyapunov functions for the super-twisting algorithm, IEEE Transactions on Automatic Control, 2012, 57(4): 1035–1040.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjoy Mondal.

Additional information

This paper was recommended for publication by Editor JIA Yingmin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Ghommam, J. & Saad, M. Homogeneous Finite-Time Consensus Control for Higher-Order Multi-Agent Systems by Full Order Sliding Mode. J Syst Sci Complex 31, 1186–1205 (2018). https://doi.org/10.1007/s11424-018-6236-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-018-6236-7

Keywords

Navigation