Skip to main content
Log in

Some open problems related to creative telescoping

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Creative telescoping is the method of choice for obtaining information about definite sums or integrals. It has been intensively studied since the early 1990s, and can now be considered as a classical technique in computer algebra. At the same time, it is still a subject of ongoing research. This paper presents a selection of open problems in this context. The authors would be curious to hear about any substantial progress on any of these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nemes I, Petkovšek M, Wilf H, et al., How to do Monthly problems with your computer, The American Mathematical Monthly, 1997, 104(6): 505–519.

    Article  MathSciNet  MATH  Google Scholar 

  2. Kauers M and Paule P, The Concrete Tetrahedron, Springer, New York, 2011.

  3. Schneider C, Symbolic summation in difference rings and applications. Proceedings of ISSAC’16, 2016, 9–12.

    Google Scholar 

  4. Benoit A, Chyzak F, Darrasse A, et al., The dynamic dictionary of mathematical functions (DDMF), Proceedings of ICMS, 2010, Lecture Notes in Computer Science, 2011, 6327: 35–41.

    Article  MATH  Google Scholar 

  5. Koutschan C, Kauers M, and Zeilberger D, Proof of George Andrews’ and David Robbins’ q-TSPP-conjecture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6): 2196–2199.

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu W and Gao X, Mathematics mechanization and applications after thirty years. Frontiers in Computer Science, 2007, 1(1): 1–8.

    Article  Google Scholar 

  7. Gosper W, Decision procedure for indefinite hypergeometric summation. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75: 40–42.

    Article  MathSciNet  MATH  Google Scholar 

  8. Wilf H and Zeilberger D, Rational functions certify combinatorial identities. Journal of the American Mathematical Society, 1990, 3: 147–158.

    Article  MathSciNet  MATH  Google Scholar 

  9. Wilf H and Zeilberger D, An algorithmic proof theory for hypergeometric (ordinary and q) multisum/integral identities. Inventiones Mathematicae, 1992, 108: 575–633.

    Article  MathSciNet  MATH  Google Scholar 

  10. Zeilberger D, The method of creative telescoping. Journal of Symbolic Computation, 1991, 11: 195–204.

    Article  MathSciNet  MATH  Google Scholar 

  11. Petkovšek M, Wilf H, and Zeilberger D, A = B, AK Peters, Ltd., 1997.

  12. van der Poorten A, A proof that Euler missed — Apéry’s proof of the irrationality for (3), The Mathematical Intelligencer, 1979, 1(4): 195–203.

    Article  MATH  Google Scholar 

  13. Zeilberger D, A holonomic systems approach to special function identities, Journal of Computational and Applied Mathematics, 1990, 32: 321–368.

    Article  MathSciNet  MATH  Google Scholar 

  14. Chyzak F, Fonctions holonomes en calcul formel, PhD thesis, INRIA Rocquencourt, 1998.

    Google Scholar 

  15. Chyzak F, An extension of Zeilberger’s fast algorithm to general holonomic functions. Discrete Mathematics, 2000, 217: 115–134.

    Article  MathSciNet  MATH  Google Scholar 

  16. Schneider C, Symbolic summation in difference fields, PhD thesis, RISC-Linz, Johannes Kepler Universität Linz, 2001.

    Google Scholar 

  17. Schneider C, A refined difference field theory for symbolic summation, Journal of Symbolic Computation, 2008, 43: 611–644.

    Article  MathSciNet  MATH  Google Scholar 

  18. Schneider C, Simplifying multiple sums in difference fields, Eds. by Blümlein J and Schneider C, Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, Texts and Monographs in Symbolic Computation, Springer, 2013, 325–360.

    Chapter  Google Scholar 

  19. Chyzak F, The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Mémoire d habilitation à diriger les recherches, 2014.

    Google Scholar 

  20. Fasenmyer M C, A note on pure recurrence relations, The American Mathematical Monthly, 1949, 56: 14–17.

    Article  MathSciNet  MATH  Google Scholar 

  21. Takayama N, An algorithm of constructing the integral of a module. Proceedings of ISSAC’90, 1990, 206–211.

  22. Takayama N, Gröbner basis, integration and transcendental functions, Proceedings of ISSAC’90, 1990, 152–156.

    Google Scholar 

  23. Wegschaider K, Computer generated proofs of binomial multi-sum identities, Master’s thesis, RISC-Linz, 1997.

    Google Scholar 

  24. Chyzak F and Salvy B, Non-commutative elimination in Ore algebras proves multivariate identities, Journal of Symbolic Computation, 1998, 26: 187–227.

    Article  MathSciNet  MATH  Google Scholar 

  25. Zeilberger D, A fast algorithm for proving terminating hypergeometric identities, Discrete Mathematics, 1990, 80: 207–211.

    Article  MathSciNet  MATH  Google Scholar 

  26. Almkvist G and Zeilberger D, The method of differentiating under the integral sign. Journal of Symbolic Computation, 1990, 11(6): 571–591.

    Article  MathSciNet  MATH  Google Scholar 

  27. Kauers M, Summation algorithms for Stirling number identities. Journal of Symbolic Computation, 2007, 42(11): 948–970.

    Article  MathSciNet  MATH  Google Scholar 

  28. Mohammed M and Zeilberger D, Sharp upper bounds for the orders of the recurrences outputted by the Zeilberger and q-Zeilberger algorithms. Journal of Symbolic Computation, 2005, 39(2): 201–207.

    Article  MathSciNet  MATH  Google Scholar 

  29. Apagodu M and Zeilberger D, Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory. Advances in Applied Mathematics, 2006, 37(2): 139–152.

    Article  MathSciNet  MATH  Google Scholar 

  30. Koutschan C, A fast approach to creative telescoping, Mathematics in Computer Science, 2010, 4(2–3): 259–266.

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen S and Kauers M, Trading order for degree in creative telescoping. Journal of Symbolic Computation, 2012, 47(8): 968–995.

    Article  MathSciNet  MATH  Google Scholar 

  32. Chen S and Kauers M, Order-degree curves for hypergeometric creative telescoping, Proceedings of ISSAC’12, 2012, 122–129.

    Google Scholar 

  33. Chen S, Kauers M, and Koutschan C, A generalized apagodu-zeilberger algorithm, Proceedings of ISSAC’14, 2014, 107–114.

    Google Scholar 

  34. Bostan A, Chen S, Chyzak F, et al., Complexity of creative telescoping for bivariate rational functions, Proceedings of ISSAC’10, 2010, 203–210.

    Google Scholar 

  35. Bostan A, Chen S, Chyzak F, et al., Hermite reduction and creative telescoping for hyperexponential functions, Proceedings of ISSAC’13, 2013, 77–84.

    Google Scholar 

  36. Chen S, Huang H, Kauers M, et al., A modified Abramov-Petkovsek reduction and creative telescoping for hypergeometric terms, Proceedings of ISSAC’15, 2015, 117–124.

    Google Scholar 

  37. Huang H, New bounds for creative telescoping. Proceedings of ISSAC’16, 2016, 279–286.

    Google Scholar 

  38. Chen S, Kauers M, and Koutschan C, Reduction-based creative telescoping for algebraic functions. Proceedings of ISSAC’16, 2016, 175–182.

    Google Scholar 

  39. Bostan A, Dumont L, and Salvy B, Efficient algorithms for mixed creative telescoping. Proceedings of ISSAC’16, 2016, 127–134.

    Google Scholar 

  40. Du H, Huang H, and Li Z, Reduction-based creative telescoping for q-hypergeometric terms, in preparation.

  41. Trager B, On the integration of algebraic functions, PhD thesis, MIT, 1984.

    Google Scholar 

  42. Bronstein M and Antipolis I S, Symbolic Integration Tutorial. Inria Sophia Antipolis Issac, 1998.

    Google Scholar 

  43. Chevalley C, Introduction to the Theory of Algebraic Functions of One Variable. AMS, 1951.

    Google Scholar 

  44. Kauers M and Yen L, On the length of integers in telescopers for proper hypergeometric terms. Journal of Symbolic Computation, 2015, 66(1–2): 21–33.

    Article  MathSciNet  MATH  Google Scholar 

  45. Jaroschek M, Kauers M, Chen S, et al., Desingularization explains order-degree curves for Ore operators, Ed. by Manuel Kauers, Proceedings of ISSAC’13, 2013, 157–164.

    Google Scholar 

  46. Abramov S and van Hoeij M, Desingularization of linear difference operators with polynomial coefficients. Proceedings of ISSAC’99, 1999, 269–275.

    Google Scholar 

  47. Abramov S, Barkatou M, and van Hoeij M, Apparent singularities of linear difference equations with polynomial coefficients, Applicable Algebra in Engeneering. Communication and Computing, 2006, 17(2): 117–133.

    MathSciNet  MATH  Google Scholar 

  48. Chen S, Kauers M, and Singer M, Desingularization of Ore operators. Journal of Symbolic Computation, 2016, 74(5/6): 617–626.

    Article  MathSciNet  MATH  Google Scholar 

  49. Risch R, The problem of integration in finite terms. Transactions of the American Mathematical Society, 1969, 139: 167–189.

    Article  MathSciNet  MATH  Google Scholar 

  50. Risch R, The solution of the problem of integration in finite terms. Bulletin of the American Mathematical Society, 1970, 79: 605–608.

    Article  MathSciNet  MATH  Google Scholar 

  51. Bronstein M, Symbolic Integration I, Algorithms and Computation in Mathematics, 2nd Edition, Springer, 2005, 1.

    MATH  Google Scholar 

  52. Karr M, Summation in finite terms. Journal of the ACM, 1981, 28: 305–350.

    Article  MathSciNet  MATH  Google Scholar 

  53. Karr M, Theory of summation in finite terms. Journal of Symbolic Computation, 1985, 1(3): 303–315.

    Article  MathSciNet  MATH  Google Scholar 

  54. Abramov S, Applicability of Zeilberger’s algorithm to hypergeometric terms, Proceedings of ISSAC’02, 2002, 1–7.

    Google Scholar 

  55. Abramov S and Le H, A criterion for the applicability of Zeilberger’s algorithm to a rational function, Discrete Mathematics, 2002, 259(1–3): 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  56. Abramov S, When does Zeilberger’s algorithm succeed? Advances in Applied Mathematics, 2003, 30(3): 424–441.

    Article  MathSciNet  MATH  Google Scholar 

  57. Abramov S and Le H, On the order of the recurrence produced by the method of creative telescoping. Discrete Mathematics, 2005, 298(1–3): 2–17.

    Article  MathSciNet  MATH  Google Scholar 

  58. Chen W Y C, Hou Q, and Mu Y, Applicability of the q-analogue of Zeilberger’s algorithm. J. Symbolic Computation, 2005, 39(2): 155–170.

    Article  MathSciNet  MATH  Google Scholar 

  59. Chen S, Chyzak F, Feng R, et al. On the existence of telescopers for mixed hypergeometric terms, J. Symbolic Computation, 2015, 68: 1–26.

  60. Raab C, Definite integration in differential fields, PhD thesis, Johannes Kepler University, 2012.

    Google Scholar 

  61. Schneider C, Finding telescopers with minimal depth for indefinite nested sum and product expressions. Proceedings of ISSAC’05, 2005, 285–292.

    Google Scholar 

  62. Verbaeten P, The automatic construction of pure recurrence relations. ACM Sigsam Bulletin, 1974, 8(3): 96–98.

    Article  Google Scholar 

  63. Chen C and Singer M, Residues and telescopers for bivariate rational functions. Advances in Applied Mathematics, 2012, 49(2): 111–133.

    Article  MathSciNet  MATH  Google Scholar 

  64. Chen C and Singer M, On the summability of bivariate rational functions. Journal of Algebra, 2014, 409: 320–343.

    Article  MathSciNet  MATH  Google Scholar 

  65. Hou Q H and Wang R H, An algorithm for deciding the summability of bivariate rational functions. Advances in Applied Mathematics, 2014, 64(C): 31–49.

    Article  MathSciNet  MATH  Google Scholar 

  66. Chen S, Hou Q, Labahn G, et al., Existence problem of telescopers: Beyond the bivariate case, Proceedings of ISSAC’16, 2016, 167–174.

    Google Scholar 

  67. Picard E and Simart G, Theorie des Fonctions Algebriques de Deux Variables independantes. Gauthier-Villars, 1906.

    Google Scholar 

  68. Picard E, Sur les periodes des integrales doubles et sur une classe d’equations differentielles lineaires. Annales scientifiques de l’E.N.S., 1933, 50: 393–395.

    MATH  Google Scholar 

  69. Dwork B, On the zeta function of a hypersurface. Publications Mathematiques de l’IHES, 1962, 12: 5–68.

    Article  MathSciNet  MATH  Google Scholar 

  70. Dwork B, On the zeta function of a hypersurface II. Annals of Mathematics, 1964, 80(2): 227–299.

    Article  MathSciNet  Google Scholar 

  71. Griffiths P, On the periods of certain rational integrals I. Annals of Mathematics, 1969, 90(3): 460–495.

    Article  MathSciNet  MATH  Google Scholar 

  72. Griffiths P, On the periods of certain rational integrals II. Annals of Mathematics, 1969, 90(3): 496–541.

    Article  MathSciNet  MATH  Google Scholar 

  73. Bostan A, Lairez P, and Salvy B, Creative telescoping for rational functions using the Griffiths- Dwork method. Proceedings of ISSAC’13, 2013, 93–100.

    Google Scholar 

  74. Chyzak F, Mahboubi A, Sibut-Pinote T, et al., A computer-algebra-based formal proof of the irrationality of ?(3), Eds. by Klein G and Gamboa R, Interactive Theorem Proving, Lecture Notes in Computer Science, Vienna, Austria, Springer, 2014, 8558: 160–176.

    MATH  Google Scholar 

  75. Abramov S and Petkovšek M, Gosper’s algorithm, accurate summation, and the discrete Newton-Leibniz formula, Proceedings of ISSAC’05, 2005, 5–12.

    Google Scholar 

  76. Ryabenko A, A definite summation of hypergeometric terms of special kind, Programming and Computer Software, 2011, 37(4): 187–191.

    Article  MathSciNet  MATH  Google Scholar 

  77. Harrison J, Formal proofs of hypergeometric sums. Journal of Automated Reasoning, 2015, 55: 223–243.

    Article  MathSciNet  MATH  Google Scholar 

  78. Rosenkranz M and Regensburger G, Integro-differential polynomials and operators, Proceedings of ISSAC’08, 2008, 261–268.

    Google Scholar 

  79. Rosenkranz M and Regensburger G, Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. Journal of Symbolic Computation, 2008, 43(8): 515–544.

    Article  MathSciNet  MATH  Google Scholar 

  80. Rosenkranz M, Regensburger G, and Middeke J, A skew polynomial approach to integrodifferential operators, Proceedings of ISSAC’09, 2009, 287–294.

    Google Scholar 

  81. Guo L, Rosenkranz M, and Regensburger G, On integro-differential algebras. Journal of Pure and Applied Algebra, 2014, 218: 456–473.

    Article  MathSciNet  MATH  Google Scholar 

  82. Regensburger G, Symbolic computation with integro-differential operators. Proceedings of ISSAC’ 16, 2016, 17–18.

    Chapter  Google Scholar 

  83. Bostan A, Lairez P, and Salvy B, Multiple binomial sums. Journal of Symbolic Computation, 2016, DOI: 10.1016/j.jsc.2016.04.002.

    Google Scholar 

  84. Christol G, Globally bounded solutions of differential equations, Analytic Number Theory. Lecture Notes in Mathematics, 1990, 1434: 45–64.

    Article  Google Scholar 

  85. Majewicz J, WZ-style certification and sister Celine’s technique for Abel-type identities, J. Difference Eqs. and Appl., 1996, 2: 55–65.

    Article  MathSciNet  MATH  Google Scholar 

  86. Chen W Y C and Sun L H, Extended Zeilberger’s algorithm for identities on Bernoulli and Euler polynomials. Journal of Number Theory, 2009, 129(9): 2111–2132.

    Article  MathSciNet  MATH  Google Scholar 

  87. Chyzak F, Kauers M, and Salvy B, A non-holonomic systems approach to special function identities, Ed. by May J, Proceedings of ISSAC’09, 2009, 111–118.

    Google Scholar 

  88. Bernardi O, Bousquet-Melou M, and Raschel K, Counting quadrant walks via Tutte’s invariant method. Proceedings of FPSAC’16, 2016.

    Google Scholar 

  89. Mansfield E, Differential Gröbner bases, PhD thesis, University of Sydney, 1993.

    Google Scholar 

  90. Gerdt V, Gröbner bases and involutive methods of algebraic and differential equations, Math. Comput. Modeling, 1997, 25(8/9): 75–90.

    Article  MathSciNet  MATH  Google Scholar 

  91. Hubert E, Factorization-free decomposition algorithms in differential algebra, Journal of Symbolic Computation, 2000, 29(4–5): 641–662.

    Article  MathSciNet  MATH  Google Scholar 

  92. Chen Y and Gao X, Involutive characteristic sets of algebraic partial differential equation systems. Science in China (A), 2003, 46(4): 469–487.

    Article  MathSciNet  MATH  Google Scholar 

  93. Gao X, Li W, and Yuan C. Intersection theory in differential algebraic geometry: Generic intersections and the differential Chow form, Trans. Amer. Math. Soc., 2013, 365(9): 4575–4632.

    Article  MathSciNet  MATH  Google Scholar 

  94. Petkovšek M, Hypergeometric solutions of linear recurrences with polynomial coefficients. Journal of Symbolic Computation, 1992, 14(2–3): 243–264.

    Article  MathSciNet  MATH  Google Scholar 

  95. Abramov S and Petkovšek M, D’alembertian solutions of linear differential and difference equations, Proceedings of ISSAC’94, 2004, 169–174.

    Google Scholar 

  96. Van der Put M and Singer M, Galois theory of difference equations. Lecture Notes in Mathematics, 1666, Springer, 1997.

    Google Scholar 

  97. Hendriks P and Singer M, Solving difference equations in finite terms. Journal of Symbolic Computation, 1999, 27(3): 239–259.

    Article  MathSciNet  MATH  Google Scholar 

  98. van Hoeij M and Yuan Q, Finding all Bessel type solutions for linear differential equations with rational function coefficients. Proceedings of ISSAC’10, 2010, 37–44.

    Google Scholar 

  99. Cha Y, van Hoeij M, and Levy G, Solving recurrence relations using local invariants. Proceedings ISSAC’10, 2010, 303–309.

    Google Scholar 

  100. Cha Y, Closed form solutions of linear difference equations, PhD thesis, Florida State University, 2010.

    Google Scholar 

  101. Kunwar V and van Hoeij M, Second order differential equations with hypergeometric solutions of degree three. Proceedings of ISSAC’13, 2013, 235–242.

    Google Scholar 

  102. Imamoglu E and van Hoeij M, Computing hypergeometric solutions of second order linear differential equations using quotients of formal solutions. Proceedings ISSAC’15, 2015, 235–242.

    Google Scholar 

  103. Koutschan C, Holonomic functions (User’s Guide), Technical Report 10-01, RISC Report Series, University of Linz, Austria, 2010.

    Google Scholar 

  104. Kauers M and Zeilberger D, The computational challenge of enumerating high dimensional rook walks. Advances in Applied Mathematics, 2011, 47(4): 813–819.

    Article  MathSciNet  MATH  Google Scholar 

  105. Lipshitz L, The diagonal of a D-finite power series is D-finite. Journal of Algebra, 1988, 113: 373–378.

    Article  MathSciNet  MATH  Google Scholar 

  106. Bostan A, Chyzak F, van Hoeij M, et al., Explicit formula for the generating series of diagonal 3d rook paths, Seminaire Lotharingien Combinatoire, 2011, 66(B66a): 1–27.

    MathSciNet  MATH  Google Scholar 

  107. Beck M and Pixton D, The Ehrhart polynomial of the Birkhoff polytope. Discrete Computational Geometry, 2003, 30: 623–637.

    Article  MathSciNet  MATH  Google Scholar 

  108. Beck M and Robins S, Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra, Springer-Verlag, New York, 2007.

    MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous referee and Prof. GAO Xiao-Shan for constructive suggestions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoshi Chen.

Additional information

Chen S S was supported by the National Natural Science Foundation of China under Grant No. 11501552, the President Fund of the Academy of Mathematics and Systems Science, CAS (2014-cjrwlzx-chshsh), and a Starting Grant from the Ministry of Education of China. Kauers M was supported by the Austrian FWF under Grant Nos. F5004, Y464-N18, and W1214.

This paper was recommended for publication by Editor-in-Chief GAO Xiao-Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Kauers, M. Some open problems related to creative telescoping. J Syst Sci Complex 30, 154–172 (2017). https://doi.org/10.1007/s11424-017-6202-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-017-6202-9

Keywords

Navigation