Skip to main content
Log in

Toric difference variety

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In this paper, the concept of toric difference varieties is defined and four equivalent descriptions for toric difference varieties are presented in terms of difference rational parametrization, difference coordinate rings, toric difference ideals, and group actions by difference tori. Connections between toric difference varieties and affine ℕ[x]-semimodules are established by proving the one-to-one correspondence between irreducible invariant difference subvarieties and faces of ℕ[x]-semimodules and the orbit-face correspondence. Finally, an algorithm is given to decide whether a binomial difference ideal represented by a ℤ[x]-lattice defines a toric difference variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demazure M, Sous-groupes algébriques de rang maximum du groupe de cremona, Ann. Sci. École Norm. Sup., 1970, 3: 507–588.

    MathSciNet  MATH  Google Scholar 

  2. Miyake K and Oda T, Almost homogeneous algebraic varieties under algebraic torus action, Manifolds-Tokyo, ed. by Hattori A, University. Tokyo Press, Tokyo, 1975, 373–381.

  3. Kempf G, Knudsen F, Mumford D, et al., Toroidal Embeddings I, Lecture Notes in Math. 339, Springer-Verlag, Berlin, 1973.

    Book  Google Scholar 

  4. Satake I, On the arithmetic of tube domains (blowing-up of the point at infinity). Bull. Amer. Math. Soc., 1973, 79: 1076–1094.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cox D, Little J, and Schenck H, Toric Varieties, Springer-Verlag, New York, 2010.

    MATH  Google Scholar 

  6. Gelfand I M, Kapranov M, and Zelevinsky A, Discriminants, Resultants and Multidimensional Determinants, Boston, Birkhäuser, 1994.

    Book  MATH  Google Scholar 

  7. Oda T, Convex Bodies and Algebraic Geometry, Springer, New York, 1988.

    MATH  Google Scholar 

  8. Cohn R M, Difference Algebra, Interscience Publishers, New York, 1965.

    MATH  Google Scholar 

  9. Hrushovski E, The elementary theory of the frobenius automorphisms, Available from http://www.ma.huji.ac.il/˜ ehud/, 2012.

    Google Scholar 

  10. Levin A, Difference Algebra, Springer-Verlag, New Work, 2008.

    Book  MATH  Google Scholar 

  11. Wibmer M, Algebraic difference equations, Lecture notes, available from http://www.math.upenn.edu/˜wibmer/AlgebraicDifferenceEquations.pdf, 2013.

    MATH  Google Scholar 

  12. Ritt J F and Doob J L, Systems of algebraic difference equations. American Journal of Mathematics, 1933, 55(1): 505–514.

    Article  MathSciNet  MATH  Google Scholar 

  13. Li W and Li Y H, Difference chow form. Journal of Algebra, 2015, 428: 67–90.

    Article  MathSciNet  MATH  Google Scholar 

  14. Li W, Yuan C M, and Gao X S, Sparse difference resultant. Journal of Symbolic Computation, 2015, 68: 169–203.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao X S, Luo Y, and Yuan C M, A characteristic set method for ordinary difference polynomial systems, Journal of Symbolic Computation, 2009, 44(3): 242–260.

  16. Gao X S, Huang Z, and Yuan C M, Binomial difference ideals. Journal of Symbolic Computation, 2016, DOI: 10.1016/j.jsc.2016.07.029.

    Google Scholar 

  17. Jing R J, Yuan C M, and Gao X S, A polynomial-time algorithm to compute generalized hermite normal form of matrices over Z[x], arXiv: 1601.01067, 2016.

    Google Scholar 

  18. Cox D, Little J, and O’Shea D, Using Algebraic Geometry, Springer-Verlag, New York, 1998.

    Book  MATH  Google Scholar 

  19. Wibmer M, Affine difference algebraic groups, arXiv: 1405.6603, 2014.

    Google Scholar 

  20. Wang J, Monomial difference ideals. Proceedings of the American Mathematical Society, 2016, DOI: 10.1090/proc/13369.

    Google Scholar 

  21. Gao X S, Li W, and Yuan C M, Intersection theory in differential algebraic geometry: Generic intersections and the differential chow form. Trans. of Amer. Math. Soc., 2013, 365(9): 4575–4632.

    Article  MathSciNet  MATH  Google Scholar 

  22. Cohen H, A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin, 1993.

    Book  MATH  Google Scholar 

  23. Lam T Y, Serre’s Problem on Projective Modules, Springer-Verlag, Berlin Heidelberg, 2006.

    Book  MATH  Google Scholar 

  24. Li W, Yuan C M, and Gao X S, Sparse differential resultant for laurent differential polynomials. Foundations of Computational Mathematics, 2015, 15(2): 451–517.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ming Yuan.

Additional information

This research is supported by the National Natural Science Foundation of China under Grant No. 11688101.

This paper was recommended for publication by Editor LI Hongbo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XS., Huang, Z., Wang, J. et al. Toric difference variety. J Syst Sci Complex 30, 173–195 (2017). https://doi.org/10.1007/s11424-017-6174-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-017-6174-9

Keywords

Navigation