Skip to main content
Log in

A Nonlinear Interval Portfolio Selection Model and Its Application in Banks

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In classical Markowitz’s Mean-Variance model, parameters such as the mean and covariance of the underlying assets’ future return are assumed to be known exactly. However, this is not always the case. The parameters often correspond to quantities that fall within a range, or can be known ambiguously at the time when investment decision must be made. In such situations, investors determine returns on investment and risks etc. and make portfolio decisions based on experience and economic wisdom. This paper tries to use the concept of interval numbers in the fuzzy set theory to extend the classical mean-variance portfolio selection model to a mean-downside semi-variance model with consideration of liquidity requirements of a bank. The semi-variance constraint is employed to control the downside risk, filling in the existing interval portfolio optimization model based on the linear semi-absolute deviation to depict the downside risk. Simulation results show that the model behaves robustly for risky assets with highest or lowest mean historical rate of return and the optimal investment proportions have good stability. This suggests that for these kinds of assets the model can reduce the risk of high deviation caused by the deviation in the decision maker’s experience and economic wisdom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Markowitz H, Portfolio selection, The Journal of Finance, 1952, 7(1): 77–91.

    Google Scholar 

  2. Kolm P N, Tütüncü R, and Fabozzi F J, 60 Years of portfolio optimization: Practical challenges and current trends, European Journal of Operational Research, 2014, 234(2): 356–371.

    Article  MathSciNet  MATH  Google Scholar 

  3. Konno H and Yamazaki H, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 1991, 37(5): 519–531.

    Article  Google Scholar 

  4. Feinstein C D and Thapa M N, Notes: A reformulation of a mean-absolute deviation portfolio optimization model, Management Science, 1993, 39(39): 1552–1553.

    Article  MATH  Google Scholar 

  5. Grootveld H and Hallerbach W, Variance vs downside risk: Is there really that much difference? European Journal of operational research, 1999, 114(2): 304–319.

    Article  MATH  Google Scholar 

  6. Chiodi L, Mansini R, and Speranza M G, Semi-absolute deviation rule for mutual funds portfolio selection, Annals of Operations Research, 2003, 124(1–4): 245–265.

    Article  MathSciNet  MATH  Google Scholar 

  7. Young M R, A minimax portfolio selection rule with linear programming solution, Management science, 1998, 44(5): 673–683.

    Article  MATH  Google Scholar 

  8. Cai X, Teo K L, Yang X, et al., Portfolio optimization under a minimax rule, Management Science, 2000, 46(7): 957–972.

    Article  MATH  Google Scholar 

  9. Chi G T, Chi F, and Yan DW, The Three factors optimization model of mean-deviation-skewness on loans portfolio, Operations Research & Management Science, 2009, 18(4): 98–111.

    Google Scholar 

  10. Wu H L and Li Z F, Multi-period mean-variance portfolio selection with Markov regime switching and uncertain time-horizon, Journal of Systems Science and Complexity, 2011, 24(1): 140–155.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bi J N, Guo J Y, and Bai L H, Optimal multi-asset investment with no-shorting constraint under mean-variance criterion for an insurer, Journal of Systems Science and Complexity, 2011, 24(2): 291–307.

    Article  MathSciNet  MATH  Google Scholar 

  12. Muller G E and Witbooi P J, An optimal portfolio and capital management strategy for Basel III compliant commercial banks, Journal of Applied Mathematics, 2014, 130(3): 343–376.

    Google Scholar 

  13. Li X, Qin Z, and Kar S, Mean-variance-skewness model for portfolio selection with fuzzy returns, European Journal of Operational Research, 2010, 202(1): 239–247.

    Article  MATH  Google Scholar 

  14. Liu S T, A fuzzy modeling for fuzzy portfolio optimization, Expert Systems with Applications, 2011, 38(11): 13803–13809.

    Google Scholar 

  15. Gupta P, Inuiguchi M, Mehlawat M K, et al., Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints, Information Sciences, 2013, 229(229): 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang X, A new perspective for optimal portfolio selection with random fuzzy returns, Information Sciences, 2007, 177(23): 5404–5414.

    Article  MathSciNet  MATH  Google Scholar 

  17. Hao F F and Liu Y K, Mean-variance models for portfolio selection with fuzzy random returns, Journal of Applied Mathematics & Computing, 2009, 30(1): 9–38.

    Article  MathSciNet  MATH  Google Scholar 

  18. Qin Z, Wang D ZW, and Li X, Mean-semivariance models for portfolio optimization problem with mixed uncertainty of fuzziness and randomness, International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2013, 21(1): 127–139.

    Article  MathSciNet  MATH  Google Scholar 

  19. Li Y F, Huang G H, Li Y P, et al., Regional-scale electric power system planning under uncertainty-A multistage interval-stochastic integer linear programming approach, Energy Policy, 2010, 38(1): 475–490.

    Article  Google Scholar 

  20. Ji X D and Zhu S S, The convergence of set-valued scenario approach for downside risk minimization, Journal of Systems Science and Complexity, 2016, 29(3): 722–735.

    Article  MathSciNet  MATH  Google Scholar 

  21. Jobson J D and Korkie B, Estimation for Markowitz efficient portfolios, Journal of the American Statistical Association, 1980, 75(371): 544–554.

    Article  MathSciNet  MATH  Google Scholar 

  22. Tu J and Zhou G, Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies, Journal of Financial Economics, 2011, 99(1): 204–215.

    Article  Google Scholar 

  23. Yu V F, Hu K J, and Chang A Y, An interactive approach for the multi-objective transportation problem with interval parameters, International Journal of Production Research, 2015, 53(4): 1051–1064.

    Article  Google Scholar 

  24. Fu S, Chen J, Zhou H, et al., Application of multiple attribute decision-making approaches with interval numbers in fields of investment decision, Information Technology Journal, 2014, 13(5): 853–858.

    Article  Google Scholar 

  25. Nikoo M R, Kerachian R, and Poorsepahy-Samian H, An interval parameter model for cooperative inter-basin water resources allocation considering the water quality issues, Water Resources Management, 2012, 26(11): 3329–3343.

    Article  Google Scholar 

  26. Zhang W G, Zhang X L, and Xiao W L, Portfolio selection under possibilistic mean-variance utility and a SMO algorithm, European Journal of Operational Research, 2009, 197(2): 693–700.

    Article  MATH  Google Scholar 

  27. Deng X T, Li Z F, and Wang S Y, A minimax portfolio selection strategy with equilibrium, European Journal of Operational Research, 2005, 166(1): 278–292.

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu M, Kong D W, Xu J P, et al., On interval portfolio selection problem, Fuzzy Optimization & Decision Making, 2013, 12(3): 289–304.

    Article  MathSciNet  Google Scholar 

  29. Ida M, Portfolio selection problem with interval coefficients, Applied Mathematics Letters, 2003, 16(5): 709–713.

    Article  MathSciNet  MATH  Google Scholar 

  30. Bhattacharyya R, Kar S, and Majumder D D, Fuzzy mean-variance-skewness portfolio selection models by interval analysis, Computers & Mathematics with Applications, 2011, 61(1): 126–137.

    Article  MathSciNet  MATH  Google Scholar 

  31. Lai K K, Wang S Y, Xu J P, et al., A class of linear interval programming problems and its application to portfolio selection, IEEE Transactions on Fuzzy Systems, 2002, 10(6): 698–704.

    Article  Google Scholar 

  32. Li X and Qin Z, Interval portfolio selection models within the framework of uncertainty theory, Economic Modeling, 2014, 41: 338–344.

    Article  Google Scholar 

  33. Tien F and Seow E, Asset allocation in a downside risk framework, Journal of Real Estate Portfolio Management, 2000, 6(3): 213–223.

    Google Scholar 

  34. Estrada J, The cost of equity of internet stocks: A downside risk approach, European Journal of Finance, 2004, 10(4): 239–254.

    Article  Google Scholar 

  35. Pla-Santamaria D and Bravo M, Portfolio optimization based on downside risk: A meansemivariance efficient frontier from Dow Jones blue chips, Annals of Operations Research, 2013, 205(1): 189–201.

    Article  MATH  Google Scholar 

  36. Ishibuchi H and Tanaka H, Multiobjective programming in optimization of the interval objective function, European Journal of Operational Research, 1990, 48(2): 219–225.

    Article  MATH  Google Scholar 

  37. Sengupta A and Pal T K, On comparing interval numbers, European Journal of Operational Research, 2000, 127(1): 28–43.

    Article  MathSciNet  MATH  Google Scholar 

  38. Nemirovski A and Shapiro A, Convex approximations of chance constrained programs, SIAM Journal on Optimization, 2006, 17(4): 969–996.

    Article  MathSciNet  MATH  Google Scholar 

  39. Ballestero E, Mean-semivariance efficient frontier: A downside risk model for portfolio selection, Applied Mathematical Finance, 2005, 12(1): 1–15.

    Article  MATH  Google Scholar 

  40. Dorfleitner G and Pfister T, Capital allocation and per-unit risk in in homogeneous and stressed credit portfolios, The Journal of Fixed Income, 2013, 22(3): 64–78.

    Article  Google Scholar 

  41. Hanna S D, Gutter M S, and Fan J X, A measure of risk tolerance based on economic theory, Journal of Financial Counseling and Planning, 2001, 12(2): 53–60.

    Google Scholar 

  42. Borio C and Zhu H, Capital regulation, risk-taking and monetary policy: A missing link in the transmission mechanism, Journal of Financial Stability, 2012, 8(4): 236–251.

    Article  Google Scholar 

  43. Cooper W W, Kingyens A T, and Paradi J C, Two-stage financial risk tolerance assessment using data envelopment analysis, European Journal of Operational Research, 2014, 233(1): 273–280.

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhao Y M and Chen H Y, Interval number linear programming model of portfolio investment, Operations Research & Management Science, 2006, 15(2): 124–127.

    Google Scholar 

  45. Chi G T, Sun X Y, and Dong H C, A portfolio optimization model of banking asset based on the adjusted credit grade and the Semivariance absolute deviation, Systems Engineering — Theory & Practice, 2006, 26(8): 1–16.

    Google Scholar 

  46. Rose P S and Hudgins S C, Bank Management & Financial Services, Beijing, China Machine Press, 2008.

    Google Scholar 

  47. El-Alem M M, El-Sayed S, and El-Sobky B, Local convergence of the interior-Point Newton method for general nonlinear programming, Journal of Optimization Theory & Applications, 2004, 120(3): 487–502.

    Article  MathSciNet  MATH  Google Scholar 

  48. Wächter A and Biegler L T, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 2006, 106(1): 25–57.

    Article  MathSciNet  MATH  Google Scholar 

  49. Haeser and Gabriel, On the global convergence of interior-point nonlinear programming algorithms, Computational & Applied Mathematics, 2010, 29(2): 125–138.

    MathSciNet  Google Scholar 

  50. Gould N and Toint P L, Global convergence of a hybrid trust-region SQP-filter algorithm for general nonlinear programming, SIAM Journal on Optimization, 1999, 13(3): 635–659.

    MATH  Google Scholar 

  51. Xu D C, Han J Y, and Chen Z W, Nonmonotone trust-region method for nonlinear programming with general constraints and simple bounds, Journal of Optimization Theory & Applications, 2004, 122(1): 185–206.

    Article  MathSciNet  MATH  Google Scholar 

  52. Huang M and Pu D, A trust-region SQP method without a penalty or a filter for nonlinear programming, Journal of Computational & Applied Mathematics, 2015, 281(C): 107–119.

    Article  MathSciNet  MATH  Google Scholar 

  53. Chter A and Biegler L T, Line search filter methods for nonlinear programming: Local convergence, SIAM Journal on Optimization, 2005, 16(1): 32–48.

    Article  MathSciNet  MATH  Google Scholar 

  54. Wächter A and Biegler L T, Line search filter methods for nonlinear programming: Motivation and global convergence, SIAM Journal on Optimization, 2005, 16(1): 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  55. Birgin E G, Floudas C A, and Martínez J M, Global minimization using an augmented Lagrangian method with variable lower-level constraints, Mathematical Programming, 2010, 125(1): 139–162.

    Article  MathSciNet  MATH  Google Scholar 

  56. Androulakis I P, Maranas C D, and Floudas C A, αBB: A global optimization method for general constrained nonconvex problems, Journal of Global Optimization, 1995, 7(4): 337–363.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinkeung Lai.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 71301017,71731003, 71671023, 11301050 and 51375067, the National Social Science Foundation of China under Grant No. 16BTJ017, China Postdoctoral Science Foundation Funded Project under Grant No. 2016M600207 and the Doctoral Fund of Liaoning Province under Grant No. 20131017.

This paper was recommended for publication by Editor WANG Shouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, D., Hu, Y. & Lai, K. A Nonlinear Interval Portfolio Selection Model and Its Application in Banks. J Syst Sci Complex 31, 696–733 (2018). https://doi.org/10.1007/s11424-017-6070-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-017-6070-3

Keywords

Navigation