Skip to main content
Log in

Intraday volume percentages forecasting using a dynamic SVM-based approach

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper proposes a dynamic model to forecast intraday volume percentages by decomposing the trade volume into two parts: The average part as the intraday volume pattern and the residual term as the abnormal changes. An empirical test on data spanning half-a-year gold futures and S&P 500 futures reveals that a rolling average of the previous days’ volume percentages shows great predictive ability for the average part. An SVM approach with the input pattern consisting of two categories is employed to forecast the residual term. One is the previous days’ volume percentages in the same time interval and the other is the most recent volume percentages. The study shows that this dynamic SVM-based forecasting approach outperforms the other commonly used statistical methods and enhances the tracking performance of a VWAP strategy greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chordia T, Roll R, and Subrahmanyam A. Recent trends in trading activity and market quality. J. Finan. Econ., 2011, 101(2): 243–263.

    Article  Google Scholar 

  2. Satish V, Saxena A, and Palmer M, Predicting intraday trading volume and volume percentages, Journal of Trading, 2014, 9(3): 15–25.

    Article  Google Scholar 

  3. Chen C J, Liu X, and Lai K K, Comparisons of strategies on gold algorithmic trading, Business Intelligence and Financial Engineering (BIFE), 2013 Sixth International Conference, 2013.

    Google Scholar 

  4. Smirlock M and Starks L, An empirical analysis of the stock price-volume relationship, J. Banking Finance, 1988, 12(1): 31–41.

    Article  Google Scholar 

  5. Gwilym O A, McMillan D, and Speight A, The intraday relationship between volume and volatility in liffe futures markets, Appl. Finan. Econ., 1999, 9(6): 593–604.

    Article  Google Scholar 

  6. Darrat A F, Rahman S, and Zhong M, Intraday trading volume and return volatility of the djia stocks: A note, J. Banking Finance, 2003, 27(10): 2035–2043.

    Article  Google Scholar 

  7. Cai C X, Hudson R, and Keasey K, Intra day bid-ask spreads, trading volume and volatility: Recent empirical evidence from the london stock exchange, J. Bus. Financ. Account., 2004, 31(5–6): 647–676.

    Article  Google Scholar 

  8. Chevallier J and Sévi B, On the volatility-volume relationship in energy futures markets using intraday data, Energy Econ., 2012, 34(6): 1896–1909.

    Article  Google Scholar 

  9. Gerety M S and Mulherin J H, Trading halts and market activity: An analysis of volume at the open and the close, J. Finance, 1992, 47(5): 1765–1784.

    Article  Google Scholar 

  10. Lee C, Ready M J, and Seguin P J, Volume,volatility,and new york stock exchange trading halts, J. Finance, 1994, 49(1): 183–214.

    Article  Google Scholar 

  11. Atkins A B and Basu S, The effect of after-hours announcements on the intraday u-shaped volume pattern, J. Bus. Financ. Account., 1995, 22(6): 789–809.

    Article  Google Scholar 

  12. Kluger B D and McBride M E, Intraday trading patterns in an intelligent autonomous agentbased stock market, J. Econ. Behav. Organ., 2011, 79(3): 226–245.

    Article  Google Scholar 

  13. Malinova K and Park A, The impact of competition and information on intraday trading, J. Banking Finance, 2014, 44: 55–71.

    Article  Google Scholar 

  14. Bialkowski J, Darolles S, and Le Fol G, ImprovingVWAP strategies: A dynamic volume approach, J. Banking Finance, 2008, 32(9): 1709–1722.

    Article  Google Scholar 

  15. Lo A W and Wang J, Trading volume: Definitions, data analysis, and implications of portfolio theory, Rev. Financ. Stud., 2000, 13(2): 257–300.

    Article  Google Scholar 

  16. Darolles S and Le Fol G, Trading Volume and Arbitrage, INSEE, 2003.

  17. Alvim L G, Duarte Dos Santos CN, and Milidiu R L, Daily volume forecasting using high frequency predictors, Proceedings of the 10th IASTED International Conference, 2010.

    Google Scholar 

  18. Brownlees C T, Cipollini F, and Gallo G M, Intra-daily volume modeling and prediction for algorithmic trading, J. Finan. Econ., 2011, 9(3): 489–518.

    Google Scholar 

  19. Orchel M, Support vector regression with a priori knowledge used in order execution strategies based on vwap, Advanced Data Mining and Applications, Springer, Berlin Heidelberg, 2011, 318–331.

    Google Scholar 

  20. Vapnik V N and Vapnik V, Statistical Learning Theory, Wiley, New York, 1998.

  21. Lin F and Guo J, A novel support vector machine algorithm for solving nonlinear regression problems based on symmetrical points, Computer Engineering and Technology (ICCET), 2010 2nd International Conference, 2010.

    Google Scholar 

  22. Humphery-Jenner M L, Optimal VWAP trading under noisy conditions, J. Banking Finance, 2011, 35(9): 2319–2329.

    Article  Google Scholar 

  23. Yan R and Li H, Modeling and forecasting the intraday volume of shanghai security composite index, Systems and Informatics (ICSAI), 2012 International Conference, 2012.

    Google Scholar 

  24. Shen H and Huang J Z, Interday forecasting and intraday updating of call center arrivals, Manuf. Serv. Oper. Manag., 2008, 10(3): 391–410.

    Google Scholar 

  25. Andersen T G, Bollerslev T, and Cai J, Intraday and interday volatility in the Japanese stock market, J. Int. Finan. Markets, Inst. Money, 2000, 10(2): 107–130.

    Article  Google Scholar 

  26. Sévi B, Forecasting the volatility of crude oil futures using intraday data, Eur. J. Oper. Res., 2014, 235(3): 643–659.

    Article  MathSciNet  MATH  Google Scholar 

  27. Smithn M, Min A, Almeida C, et al., Modeling longitudinal data using a pair-copula decomposition of serial dependence, J. Am. Statist. Assoc., 2010, 105(492): 1467–1479.

    Article  MathSciNet  MATH  Google Scholar 

  28. Chanda A, Engle R F, and Sokalska M, High frequency multiplicative component GARCH, Available at SSRN 686173, 2005.

    Google Scholar 

  29. Coroneo L and Veredas D, A simple two-component model for the distribution of intraday returns, Europ. J. Finance, 2012, 18(9): 775–797.

    Article  Google Scholar 

  30. Vapnik V, The Nature of Statistical Learning Theory, Springer, New York, 2000.

    Book  MATH  Google Scholar 

  31. Keerthi S S and Lin C J, Asymptotic behaviors of support vector machines with gaussian kernel, Neural Comput., 2003, 15(7): 1667–1689.

    Article  MATH  Google Scholar 

  32. O’connor M, Remus W, and Griggs K, Going up-going down: How good are people at forecasting trends and changes in trends?, J. Forecasting, 1997, 16(3): 165–176.

    Article  Google Scholar 

  33. Sundhararajan S, Pahwa A, and Krishnaswami P, A comparative analysis of genetic algorithms and directed grid search for parametric optimization, Eng. Comput., 1998, 14(3): 197–205.

    Article  Google Scholar 

  34. Boser B E, Guyon I M, and Vapnik V N, A training algorithm for optimal margin classifiers, Proceedings of the Fifth Annual Workshop on Computational Learning Theory, ACM, 1992.

    Google Scholar 

  35. Cortes C and Vapnik V, Support-vector networks, J Mach Learn Res., 1995, 20(3): 273–297.

    MATH  Google Scholar 

  36. Vapnik V, Golowich S E, and Smola A, Support vector method for function approximation, regression estimation, and signal processing, Adv. Neural Inf. Process. Syst., 1997, 281–287.

    Google Scholar 

  37. Smola A J and Schölkopf B, A tutorial on support vector regression, Statist. Comput., 2004, 14(3): 199–222.

    Article  MathSciNet  Google Scholar 

  38. Mercer J, Functions of positive and negative type, and their connection with the theory of integral equations, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1909, 415–446.

    Google Scholar 

  39. Schölkopf B, Burges C J, and Smola A J, Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, 1999.

    MATH  Google Scholar 

  40. Calvori F, Cipollin F, and Gallo G M, Go with the flow: A GAS model for predicting intra-daily volume shares, Available at SSRN 2363483, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kin Keung Lai.

Additional information

This paper was recommended for publication by Editor ZHANG Xun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Lai, K.K. Intraday volume percentages forecasting using a dynamic SVM-based approach. J Syst Sci Complex 30, 421–433 (2017). https://doi.org/10.1007/s11424-016-5020-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-016-5020-9

Keywords

Navigation