Skip to main content
Log in

Controlled mean-field backward stochastic differential equations with jumps involving the value function

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper discusses mean-field backward stochastic differential equations (mean-field BSDEs) with jumps and a new type of controlled mean-field BSDEs with jumps, namely mean-field BSDEs with jumps strongly coupled with the value function of the associated control problem. The authors first prove the existence and the uniqueness as well as a comparison theorem for the above two types of BSDEs. For this the authors use an approximation method. Then, with the help of the notion of stochastic backward semigroups introduced by Peng in 1997, the authors get the dynamic programming principle (DPP) for the value functions. Furthermore, the authors prove that the value function is a viscosity solution of the associated nonlocal Hamilton-Jacobi-Bellman (HJB) integro-partial differential equation, which is unique in an adequate space of continuous functions introduced by Barles, et al. in 1997.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pardoux E and Peng S, Adapted solution of a backward stochastic differential equation, Systems and Control Letters, 1990, 14(1–2): 61–74.

    MathSciNet  MATH  Google Scholar 

  2. El Karoui N, Peng S, and Quenez M.C, Backward stochastic differential equations in finance, Math. Finance, 1997, 7(1): 1–71.

    Article  MathSciNet  MATH  Google Scholar 

  3. Duffie D and Epstein L, Stochastic differential utility, Econometrica, 1992, 60(2): 353–394.

    Article  MathSciNet  MATH  Google Scholar 

  4. Duffie D and Epstein L, Asset pricing with stochastic differential utility, Review of Financial Srudies, 1992, 5: 5–411.

    MathSciNet  Google Scholar 

  5. Chen Z and Epstein L, Ambiguity, risk and asset returns in continuous time, Econometrica, 2002, 70: 70–1403.

    MathSciNet  Google Scholar 

  6. Duffie D, Geoffard P Y, and Skiadas C, Efficient and equilibrium allocations with stochastic differential utility, Journal of Mathematical Economics, 1994, 23(2): 133–146.

    Article  MathSciNet  MATH  Google Scholar 

  7. Peng S, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stoch. Stoch. Rep., 1991, 37(1–2): 61–74.

    MathSciNet  MATH  Google Scholar 

  8. Pardoux E and Peng S, Backward stochastic differential equations and quasilinear parabolic partial differential equations, Stochastic partial differential equations and their applications, Proc. IFP Int. Conf., Charlotte/NC (USA), Lect. Notes Control Inf. Sci., 1991, 176: 176–200.

    MathSciNet  Google Scholar 

  9. Peng S, A generalized dynamic proframming principle and Hamilton-Jacobi-Bellman equation, Stoch. Stoch. Rep., 1992, 38: 38–119.

    Article  Google Scholar 

  10. Tang S and Li X, Necessary conditions for optimal control of stochastic systems with random jumps, SIAM Journal of Control and Optimization, 1994, 32: 32–1447.

    Article  MathSciNet  Google Scholar 

  11. Sznitman A S, Topics in propagation of chaos, Lect. Notes in Math., Springer-Verlag, Berlin, 1991, 1464: 1464–165.

    MathSciNet  MATH  Google Scholar 

  12. Lasry J M and Lions P L, Mean-field games, Japan. J. Math., 2007, 2: 2–229.

    Article  MathSciNet  MATH  Google Scholar 

  13. Buckdahn R, Djehiche B, Li J, et al., Mean-field backward stochastic differential equations, A limit approach, Ann. Probab., 2009, 37(4): 1524–1565.

    MathSciNet  MATH  Google Scholar 

  14. Buckdahn R, Li J, and Peng S, Mean-field backward stochastic differential equations and related partial differential equations, Stoch. Prooc. App., 2009, 119: 119–3133.

    MathSciNet  MATH  Google Scholar 

  15. Pontryagin L S, Boltanskii V G, and Gamkrelidze R V, The mathematical theorey of optimal processes, Inter-Scien., New York, 1962.

    Google Scholar 

  16. Bellman R, Dynamic Programming, Princeton University Press, 1957.

    MATH  Google Scholar 

  17. Kushner H J, On the stochastic maximum principle: Fixed time of control, J. Math. Anal. Appl., 1965, 11: 11–78.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kushner H J, Necessary conditions for continuous parameter stochastic optimization problems, SIAM J. Control Optim., 1972, 10: 10–550.

    MathSciNet  MATH  Google Scholar 

  19. Bellman R, Lectures on stochastic control, Lecture Notes in Mathematics, Springer Berlin, 1981, 972: 972–1.

    Google Scholar 

  20. Haussmann U G, A Stochastic Maximum Principle for Optimal Control of Diffusions, Longman Scientific and Technical, Essex, 1986.

    MATH  Google Scholar 

  21. Peng S, A general stochastic maximum principle for optimal control problems, SIAM J. Control. Optim., 1990, 28(4): 966–979.

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhou X, Stochastic near-optimal controls: Necessary and sufficient conditions for neat-optimality, SIAM J. Control. Optim., 1998, 36(3): 929–947.

    Article  MathSciNet  MATH  Google Scholar 

  23. Bensoussan A, Sung K C J, Yam S C P, et al., Linear-quadratic mean field games, Journal of Optimization Theory and Applications, 2015, DOI: 10.1007/s10957-015-0819-4.

    Google Scholar 

  24. Buckdahn R, Djehiche B, and Li J, A general stochastic maximum principle for SDEs of meanfield type, Appl. Math. Optim., 2011, 64: 64–197.

    Article  MathSciNet  MATH  Google Scholar 

  25. Li J, Stochastic maximum principle in the mean-field controls, Automatica, 2012, 48: 48–366.

    MathSciNet  Google Scholar 

  26. Yong J M, A linear-quadratic optimal control problem for mean-field stochastic differential equations, Technial Report, University of Central Florida, USA, 2011.

    Google Scholar 

  27. Buckdahn R and Li J, Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations, SIAM J. Control. Optim., 2008, 47(1): 444–475.

    Article  MathSciNet  MATH  Google Scholar 

  28. Peng S, BSDE and stochastic optimizations; Topics in Stochastic Analysis, Science Press, Beijing, 1997 (in Chinese).

    Google Scholar 

  29. Yong J and Zhou X, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer, New York, 1990.

    MATH  Google Scholar 

  30. Hao T and Li J, Backward stochastic differential equations coupled with value function and related optimal control problems, Abstract and Applied Analysis, Hindawi Publishing Corporation, 2014.

    Google Scholar 

  31. Barles G, Buckdahn R, and Pardoux E, Backward stochastic differential equations and integralpartial differential equations, Stoch. Stoch. Rep., 1997, 60: 60–57.

    Article  MathSciNet  MATH  Google Scholar 

  32. Li J and Peng S, Stochastic optimization theory of backward stochastic differential equations with jumps and viscosity solutions of Hamilton-Jacbi-Bellman equations, Nonlinear Anal., 2009, 70: 70–1776.

    MathSciNet  Google Scholar 

  33. Buckdahn R, Li J, and Hu Y, Stochastic respesentation for solutions of Isaacs’s type integralpartial differential equations, Stocha. Process. Appl., 2011, 121: 121–2715.

    Article  MathSciNet  Google Scholar 

  34. Crandall M G, Ishii H, and Lions P L, User’s guide to viscosity solutions of second order partial differential equations, American Mathematical Society Bulletin, 1992, 27: 27–1.

    Article  MathSciNet  MATH  Google Scholar 

  35. Barles G and Imbert C, Second-order elliptic integro-differential equations: Viscosity solutions’ theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2008, 25: 25–567.

    Article  MathSciNet  MATH  Google Scholar 

  36. Buckdahn R, Hu Y, and Li J, Integral-partial differential equations of Isaacs’s type related to stochastic differential games with jumps, http://arxiv.org/abs/1004.2752, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Min.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11171187, 11222110, Shandong Province under Grant No. JQ201202, Program for New Century Excellent Talents in University under Grant No. NCET-12-0331, 111 Project under Grant No. B12023.

This paper was recommended for publication by Editor HONG Yiguang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Min, H. Controlled mean-field backward stochastic differential equations with jumps involving the value function. J Syst Sci Complex 29, 1238–1268 (2016). https://doi.org/10.1007/s11424-016-4275-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-016-4275-5

Keywords

Navigation