Advertisement

Journal of Systems Science and Complexity

, Volume 28, Issue 5, pp 1070–1079 | Cite as

Global stability in a competition model of plankton allelopathy with infinite delay

  • Fengde ChenEmail author
  • Xiangdong Xie
  • Haina Wang
Article

Abstract

A competition model of plankton allelopathy with infinite delay is considered in this paper. By using an iterative method, the global stability of the interior equilibrium point of the system is investigated. The result shows that for this system, delay and toxic substances are harmless for the stability of the interior equilibrium point.

Keywords

Equilibrium global stability infinite delay iterative method plankton allelopathy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kuang Y, Delay Differential Equations with Applications in Population Dynamics, Academic Press New York, 1993.zbMATHGoogle Scholar
  2. [2]
    Li Z, Chen F D, and He M X, Global stability of a delay differential equations model of plankton allelopathy, Appl. Math. Comput., 2012, 218(13): 7155–7163.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Chen F D, Li Z, Chen X X and Laitochová J, Dynamic behaviors of a delay differential equation model of plankton allelopathy, J. Comput. Appl. Math., 2007, 206(2): 733–754.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Solé J, Garca-Ladona E, Ruardij P, and Estrada M, Modelling allelopathy among marine algae, Ecol. Model., 2005, 183: 373–384.CrossRefGoogle Scholar
  5. [5]
    Huo H F and Li W T, Permanence and global stability for nonautonomous discrete model of plankton allelopathy, Appl. Math. Lett., 2004, 17: 1007–1013.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Liu Z J and Chen L S, Positive periodic solution of a general discrete non-autonomous difference system of plankton allelopathy with delays, J. Comput. Appl. Math., 2006, 197(2): 446–456.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Chattopadhyay J, Effect of toxic substances on a two-species competitive system, Ecol. Model., 1996, 84: 287–289.CrossRefGoogle Scholar
  8. [8]
    Mukhopadhyay A, Chattopadhyay J, and Tapaswi P K, A delay differential equations model of plankton allelopathy, Math. Biosci., 1998, 149: 167–189.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Bandyopadhyay M, Dynamical analysis of an allelopathic phytoplankton model, J. Biol. Syst., 2006, 14(2): 205–217.CrossRefzbMATHGoogle Scholar
  10. [10]
    Smith M, Models in Ecology, Cambridge University Press Cambridge, 1974.zbMATHGoogle Scholar
  11. [11]
    Kar T K and Chaudhuri K S, On non-selective harvesting of two competing fish species in the presence of toxicity, Ecol. Model., 2003, 161: 125–137.CrossRefGoogle Scholar
  12. [12]
    Samanta G P, A two-species competitive system under the influence of toxic substances, Appl. Math. Comput., 2010, 216(1): 291–299.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Dubey B and Hussain J, A model for the allelopathic effect on two competing species, Ecol. Model., 2000, 129(2–3): 195–207.CrossRefGoogle Scholar
  14. [14]
    Li Z and Chen F D, Extinction in two dimensional nonautonomous Lotka-Volterra systems with the effect of toxic substances, Appl. Math. Comput., 2006, 182: 684–690.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Li Z and Chen F D, Extinction in periodic competitive stage-structured Lotka-Volterra model with the effects of toxic substances, J. Comput. Appl. Math., 2009, 231: 143–153.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Abbas S, Banerjee M, and Hungerbuhler N, Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model, J. Math. Anal. Appl., 2010, 367(1): 249–259.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Zhen J and Ma Z, Periodic solutions for delay differential equations model of plankton allelopathy, Comput. Math. Appl., 2002, 44(3–4): 491–500.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Chen F D and Shi C L, Global attractivity in an almost periodic multi-species nonlinear ecological model, Appl. Math. Comput., 2006, 180(1): 376–392.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Tian C R, Zhang L, and Ling Z, The stability of a diffusion model of plankton allelopathy with spatio-temporal delays, Nonlinear Anal. Real World Appl., 2009, 10: 2036–2046.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Tian C R and Lin Z G, Asymptotic behavior of solutions of a periodic diffusion system of plankton allelopathy, Nonlinear Anal. Real World Appl., 2010, 11: 1581–1588.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Chen F D, Permanence in nonautonomous multi-species predator-prey system with feedback, Appl. Math. Comput., 2006, 173(2): 694–709.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Chen F D, On a periodic multi-species ecological model, Appl. Math. Comput., 2005, 171(1): 492–510.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Chen F D, On a nonlinear non-autonomous predator-prey model with diffusion and distributed delay, J. Comput. Appl. Math., 2005, 180(1): 33–49.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Montes De Oca F and Vivas M, Extinction in two dimensional Lotka-Volterra system with infinite delay, Nonlinear Anal.: Real World Appl., 2006, 7(5): 1042–1047.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Chen F D, Li Z, and Huang Y, Note on the permanence of a competitive system with infinite delay and feedback controls, Nonlinear Anal.: Real World Appl., 2007, 8: 680–687.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Chen F D, Li Z, and Xie X D, Permanence of a nonlinear integro-differential prey-competition model with infinite delays, Commun. Nonlinear Sci. Numer. Simul., 2008, 13(10): 2290–2297.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    Chen F D and You M S, Permanence for an integrodifferential model of mutualism, Appl. Math. Comput., 2007, 186(1): 30–34.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Systems Science, Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of MathematicsNingde Teachers CollegeNingdeChina
  2. 2.College of Mathematics and Computer ScienceFuzhou UniversityFuzhouChina

Personalised recommendations