Skip to main content
Log in

Measuring and locating zones of chaos and irregularity

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The new measures computed here are the spectral detrended fluctuation analysis (sDFA) and spectral multi-taper method (sMTM). sDFA applies the standard detrended fluctuation analysis (DFA) algorithm to power spectra. sMTM exploits the minute increases in the broadband response, typical of chaotic spectra approaching optimal values. The authors chose the Brusselator, Lorenz, and Duffing as the proposed models to measure and locate chaos and severe irregularity. Their series of chaotic parametric responses in short time-series is advantageous. Where cycles have only a limited number of slow oscillations such as for systems biology and medicine. It is difficult to create, locate, or monitor chaos. From 50 linearly increasing starting points applied to the chaos target function (CTF); the mean percentage increases in Kolmogorov-Sinai entropy (KS-Entropy) for the proposed chosen models; and p-values when the models were compared statistically by Kruskal-Wallis and ANOVA1 test with distributions assumed normal are Duffing (CTF: 31%: p < 0.03); Lorenz (CTF: 2%: p < 0.03), and Brusselator (CTF: 8%: p < 0.01). Principal component analysis (PCA) is applied to assess the significance of the objective functions for tuning the chaotic response. From PCA the conclusion is that CTF is the most beneficial objective function overall delivering the highest increases in mean KS-Entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldberger A L and West B J, Chaos and order in the human body, MD Comput. 1992, 9(1): 25–34.

    Google Scholar 

  2. Goldberger A L, Rigney D R, and West B J, Chaos and fractals in human physiology, Sci. Am. 1990, 262(2): 42–49.

    Article  Google Scholar 

  3. Amaral L A, Diaz-Guilera A, Moreira A A, Goldberger A L, and Lipsitz L A, Emergence of complex dynamics in a simple model of signaling networks, Proc. Natl. Acad. Sci. USA, 2004, 101(44): 15551–15555.

    Article  MATH  MathSciNet  Google Scholar 

  4. Costa M, Goldberger A L, and Peng C K, Multiscale entropy analysis of biological signals, Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys., 2005, 71(2): 021906.

    Article  MathSciNet  Google Scholar 

  5. Peng C K, Havlin S, Stanley H E, and Goldberger A L, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos, 1995, 5(1): 82–87.

    Article  Google Scholar 

  6. Gao Z K and Jin N D, Scaling analysis of phase fluctuations in experimental three-phase flows, Physica A: Statistical Mechanics and Its Applications 2011, 390: 3541–3550.

    Article  Google Scholar 

  7. Gao ZK and Jin ND, Nonlinear characterization of oil gas water three-phase flow in complex networks, Chemical Engineering Science, 2011, 66: 2660–2671.

    Article  Google Scholar 

  8. Zhang J, Zhang K, Feng J, and Small M, Rhythmic dynamics and synchronization via dimensionality reduction: Application to human gait, PLoS. Comput. Biol., 2010, 6: 1001033.

    Article  MathSciNet  Google Scholar 

  9. Javorka M, Trunkvalterova Z, Tonhajzerova I, Javorkova J, Javorka K, and Baumert M, Shortterm heart rate complexity is reduced in patients with type 1 diabetes mellitus, Clin. Neurophysiol, 2008, 119(5): 1071–1081.

    Article  Google Scholar 

  10. Seitsonen E R, Korhonen I K, van Gils M J, Huiku M, Lotjonen J M, Korttila K T, and Yli-Hankala A M, EEG spectral entropy, heart rate, photoplethysmography, and motor responses to skin incision during sevoflurane anaesthesia, Acta Anaesthesiol. Scand., 2005, 49(3): 284–292.

    Article  Google Scholar 

  11. Choi S R, Lim Y H, Lee S C, Lee J H, and Chung C J, Spectral entropy monitoring allowed lower sevoflurane concentration and faster recovery in children, Acta Anaesthesiol. Scand., 2010, 54(7): 859–862.

    Article  Google Scholar 

  12. Vakkuri A, Yli-Hankala A, Talja P, Mustola S, Tolvanen-Laakso H, Sampson T, and Viertio-Oja H, Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia, Acta Anaesthesiol. Scand., 2004, 48(2): 145–153.

    Article  Google Scholar 

  13. Johnson R W and Shore J E, Which is the better entropy expression for speech processing: −S logS or log S?, IEEE Trans. Acoust., 1984.

    Google Scholar 

  14. Osipov V V and Ponizovskaya E V, Stochastic resonance in the brusselator model, Phys. Rev. E. Stat. Phys. Plasmas. Fluids Relat Interdiscip. Topics, 2000, 61(4): 4603–4605.

    Google Scholar 

  15. Pena B and Perez-Garcia C, Stability of turing patterns in the Brusselator model, Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys., 2001, 64(5): 056213.

    Article  MathSciNet  Google Scholar 

  16. Kubicek M, Ryzler V, and Marek M, Spatial structures in a reaction-diffusion system-detailed analysis of the Brusselator, Biophys. Chem., 1978, 8(3): 235–246.

    Article  Google Scholar 

  17. Chakravarti S, Marek M, and Ray W H, Reaction-diffusion system with Brusselator kinetics: Control of a quasiperiodic route to chaos, Phys. Rev. E. Stat. Phys. Plasmas. Fluids Relat Interdiscip. Topics, 1995, 52(3): 2407–2423.

    Google Scholar 

  18. Frland J and Alfsen K H, Lyapunov-exponent spectra for the Lorenz model, Phys. Rev. A, 1984, 29(5): 2928–2931.

    Article  Google Scholar 

  19. Lorenz E N, Deterministic nonperiodic flow, J. Atmos. Sci., 1963, 20(2): 130–141.

    Article  Google Scholar 

  20. Bonatto C, Gallas J A, and Ueda Y, Chaotic phase similarities and recurrences in a dampeddriven Duffing oscillator, Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys., 2008, 77(2): 026217.

    Article  Google Scholar 

  21. Skinner J E, Pratt C M, and Vybiral T, A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects, Am. Heart J., 1993, 125(3): 731–743.

    Article  Google Scholar 

  22. Kauffman S A and Johnsen A, Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches, J. Theor. Biol., 1991, 149(4): 467–505.

    Article  Google Scholar 

  23. Teusink B and Smid E J, Modelling strategies for the industrial exploitation of lactic acid bacteria, Nat. Rev. Microbiol., 2006, 4(1): 46–56.

    Article  Google Scholar 

  24. Anier A, Lipping T, Melto S, and Hovilehto S, Higuchi fractal dimension and spectral entropy as measures of depth of sedation in intensive care unit, Conf. Proc. IEEE Eng Med. Biol. Soc., 2004, 1: 526–529.

    Google Scholar 

  25. Weil G, Passot S, Servin F, and Billard V, Does spectral entropy reflect the response to intubation or incision during propofol-remifentanil anesthesia?, Anesth. Analg., 2008, 106(1): 152–159.

    Article  Google Scholar 

  26. Shannon C E, A mathematical theory of communication, The Bell System Technical Journal, 1948, 27: 379–423.

    Article  MATH  MathSciNet  Google Scholar 

  27. Alkan A and Kiymik M K, Comparison of AR and Welch methods in epileptic seizure detection, J. Med. Sys., 2006, 6(30): 413–419.

    Article  Google Scholar 

  28. Yule G U, On a method of investigating periodicities in disturbed series, with special reference to wolfer’s sunspot numbers, Phil. Trans. Roy. Soc., 1927, 226-A: 269–298.

    Google Scholar 

  29. Kantz H and Schreiber T, Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  30. Zyczkowski K, Renyi extrapolation of Shannon entropy, Open Systems and Information Dynamics 2003, 3(10): 297–310.

    Article  MathSciNet  Google Scholar 

  31. Zhang J, Luo X D, Nakamura T, Sun J F, and Small M, Detecting temporal and spatial correlations in pseudoperiodic time series, Physical Review E, 2007, 75(1).

    Google Scholar 

  32. Zhang J, Luo X, and Small M, Detecting chaos in pseudoperiodic time series without embedding, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2006, 73(1): 016216.

    Article  Google Scholar 

  33. Zhang J and Small M, Complex network from pseudoperiodic time series: Topology versus dynamics, Phys. Rev. Lett., 2006, 96(23): 238701.

    Article  Google Scholar 

  34. Percival D B and Walden A T, Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques, Cambridge University Press, Cambridge, 1993.

    Book  MATH  Google Scholar 

  35. Ghil M, The SSA-MTM toolkit: Applications to analysis and prediction of time series, Applications of Soft Computing, 1997, 3165: 216–230.

    Article  Google Scholar 

  36. Slepian S, Prolate spheroidal wave functions, Fourier analysis, and uncertainty, the discrete case, Bell Syst. Tech. J., 1978, 57: 1371–1430.

    Article  MATH  Google Scholar 

  37. Blackman R B and Tukey J W, The Measurement of Power Spectra: From the Point of View of Communication Engineering, Dover, New York, 1958.

    Google Scholar 

  38. Dirac P, New Notation for Quantum Mechanics, Proceedings of the Cambridge Philosophical Society, 1939, 35: 416.

    Article  MathSciNet  Google Scholar 

  39. Nelder J A and Mead R, A simplex method for function minimization, Computer Journal, 1965, 7: 308–313.

    Article  MATH  Google Scholar 

  40. Leatherbarrow R J and Fersht A R, Protein engineering, Protein Eng., 1986, 1(1): 7–16.

    Article  Google Scholar 

  41. Bjorkman M and Holmstrom K, Global optimization of costly nonconvex functions using radial basis functions, Optimization and Engineering, 2000, 1: 373–397.

    Article  MathSciNet  Google Scholar 

  42. Wolf A, Swift J B, Swinney H L, and Vastano J A, Determining Lyapunov exponents from a time-series, Physica D, 1985, 3(16): 285–317.

    Article  MathSciNet  Google Scholar 

  43. Kruskal W H and Wallis W A, Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, 1952, 260(47): 583–621.

    Article  Google Scholar 

  44. Jolliffe I T, Principal Component Analysis, Series: Springer Series in Statistics, Springer, New York, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Matthew Garner.

Additional information

This paper was recommended for publication by Editor LÜ Jinhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garner, D.M., Ling, B.WK. Measuring and locating zones of chaos and irregularity. J Syst Sci Complex 27, 494–506 (2014). https://doi.org/10.1007/s11424-014-2197-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-014-2197-7

Keywords

Navigation