Skip to main content
Log in

Complex system analysis of market return percolation model on Sierpinski carpet lattice fractal

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper investigates the statistical behaviors of fluctuations of price changes in a stock market. The Sierpinski carpet lattice fractal and the percolation system are applied to develop a new random stock price for the financial market. The Sierpinski carpet is an infinitely ramified fractal and the percolation theory is usually used to describe the behavior of connected clusters in a random graph. The authors investigate and analyze the statistical behaviors of returns of the price model by some analysis methods, including multifractal analysis, autocorrelation analysis, scaled return interval analysis. Moreover, the authors consider the daily returns of Shanghai Stock Exchange Composite Index, and the comparisons of return behaviors between the actual data and the simulation data are exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ilinski K, Physics Of Finance: Gauge Modeling in Non-equilibrium Pricing, John Wiley, New York, 2001.

    Google Scholar 

  2. Lux T and Marchesi M, Volatility clustering in financial markets: A micro-simulation of interacting agents, Int. J. Theoret. Appl. Finance, 2000, 3: 675–702.

    Article  MATH  MathSciNet  Google Scholar 

  3. Mills T C, The Econometric Modeling of Financial Time Series, 2nd edition, Cambridge University Press, Cambridge, 1999.

    Book  Google Scholar 

  4. Mandelbrot B B, Fractals and Scaling in Finance: Discontinuity, Concentration, Risks, Springer, Berlin, Heidelberg, New York, 1997.

    Book  Google Scholar 

  5. Falconer K J, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  6. Peters E E, Fractal Market Analysis: Applying Chaos Theory to Investment and Economics, John Wiley & Sons, New York, 1994.

    Google Scholar 

  7. Wang J and Deng S, Fluctuations of interface statistical physics models applied to a stock market model, Nonlinear Analysis: Real World Applications, 2008, 9: 718–723.

    Article  MATH  MathSciNet  Google Scholar 

  8. Wang J, Wang Q Y, and Shao J G, Fluctuations of stock price model by statistical physics systems, Mathematical and Computer Modelling, 2010, 51: 431–440.

    Article  MATH  MathSciNet  Google Scholar 

  9. Wang T S, Wang J, and Fan B L, Statistical analysis by statistical physics model for the stock markets, International Journal of Modern Physics C, 2009, 20: 1547–1562.

    Article  MATH  Google Scholar 

  10. Wang F, Yamasaki K, Havlin S, and Stanley H E, Scaling and memory of intraday volatility return intervals in stock markets, Physical Review E, 2006, 73: 026117.

    Article  Google Scholar 

  11. Zhang J H and Wang J, Modeling and simulation of the market fluctuations by the finite range contact systems, Simulation Modelling Practice and Theory, 2010, 18: 910–925.

    Article  Google Scholar 

  12. Guo Y L and Wang J, Simulation and statistical analysis of market return fluctuation by Zipf method, Mathematical Problems in Engineering, 2011, 2011: Article ID 253523, 13 pages.

  13. Stauffer D, Can percolation theory be applied to the stock market, Ann. Physics, 1998, 7: 529–538.

    Article  MATH  MathSciNet  Google Scholar 

  14. Wang F and Wang J, Statistical analysis and forecasting of return interval for SSE and model by lattice percolation system and neural network, Computers & Industrial Engineering, 2012, 62: 198–205.

    Article  Google Scholar 

  15. Durrett R, Lecture Notes on Particle Systems and Percolation, Wadsworth & Brooks, California, 1988.

    MATH  Google Scholar 

  16. Grimmett G, Percolation, 2nd edition, Springer-Verlag, Berlin, 1999.

    Book  MATH  Google Scholar 

  17. Liggett T, Interacting Particle Systems, Springer-Verlag, New York, 1985.

    Book  MATH  Google Scholar 

  18. Stauffer D and Aharony A, Introduction to Percolation Theory, Taylor & Francis, London, 2001.

    Google Scholar 

  19. Takayasu H, Practical Fruits of Econophysics: Proceedings of the Third Nikkei Econophysics Symposium, Springer, New York, 2006.

    Book  Google Scholar 

  20. Krivoruchenko M I, Best linear forecast of volatility in financial time series, Phys. Rev. E, 2004, 70: 036102.

    Article  Google Scholar 

  21. Mantegna R N and Stanley H E, Scaling behavior in the dynamics of an economic index, Nature, 1995, 376: 46–49.

    Article  Google Scholar 

  22. Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, Havlin S, Bunde A, and Stanley H E, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A, 2002, 316: 87–114.

    Article  MATH  Google Scholar 

  23. Bunde A, Kropp J, and Schellnhuber H J, The Science of Disasters — Climate Disruptions, Heart Attacks, and Market Crashes, Springer, Berlin, 2002.

    Google Scholar 

  24. Feder J, Fractals, Plenum Press, New York, 1988.

    Book  MATH  Google Scholar 

  25. Mandelbrot B B, The Fractal Geometry of Nature, Freeman, San Francisco, 1982.

    MATH  Google Scholar 

  26. Chen M F, From Markov Chains to Non-Equilibrium Particle Systems, World Scientific, Singapore, 1992.

    Book  MATH  Google Scholar 

  27. Shinoda M, Existence of phase transition of percolation on Sierpinski carpet lattices, J. Appl. Prob., 2002, 39: 1–10.

    MATH  MathSciNet  Google Scholar 

  28. Shinoda M, Non-existence of phase transition of oriented percolation on Sierpinski carpet lattices, Probab. Theory Relat. Fields, 2003, 125: 447–456.

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang J, Supercritical Ising model on the lattice fractal — The Sierpinski carpet, Modern Physics Letters B, 2006, 20: 409–414.

    Article  MATH  Google Scholar 

  30. Peters E E, Fractal structure in the capital markets, Financial Analyst Journal, 1989, 7: 434–453.

    Google Scholar 

  31. Peitgen H O, Jürgens H, and Saupe D, Chaos and Fractals, Springer-Verlag, New York, 1992.

    Book  Google Scholar 

  32. Muzy J F, Bacry E, and Arneodo A, Wavelets and multifractal formalism for singular signals: Application to turbulence data, Phys. Rev. Lett., 1991, 67: 3515–3518.

    Article  Google Scholar 

  33. Bershadskii A, Multifractal critical phenomena in traffic and economic processes, Eur. Phys. J. B, 1999, 11: 361–364.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Additional information

This research was supported by the National Natural Science Foundation of China Grant Nos. 71271026 and 10971010.

This paper was recommended for publication by Editor WANG Shouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Wang, J. Complex system analysis of market return percolation model on Sierpinski carpet lattice fractal. J Syst Sci Complex 27, 743–759 (2014). https://doi.org/10.1007/s11424-014-2073-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-014-2073-5

Keywords

Navigation