Skip to main content
Log in

The generating set of the differential invariant algebra and Maurer-Cartan equations of a (2+1)-dimensional burgers equation

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The authors construct Maurer-Cartan equation, the generating set of the differential invariant algebra and their syzygies for the symmetry groups of a (2+1)-dimensional Burgers equation, based on the theory of equivariant moving frames of infinite-dimensional Lie pseudo-groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Olver P J, Applications of Lie Groups to Differential Equations, Springer-Verlag, Berlin, 1993.

    Book  MATH  Google Scholar 

  2. Mari-Beffa G, Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces, Proc. Amer. Math. Soc., 2006, 134(3): 779–791.

    Article  MathSciNet  Google Scholar 

  3. McLenaghan R G and Smirnov R G, Hamilton-Jacobi Theory via Cartan Geometry, World Scientific, Singapore, 2009.

    Google Scholar 

  4. Boyko V, Patera J, and Popovych R, Invariants of solvable Lie algebras with triangular nilradicals and diagonal nilindependent elements, Linear Algebra Appl., 2008, 428(4): 834–854.

    Article  MathSciNet  MATH  Google Scholar 

  5. Feng S, Kogan I A, and Krim H, Classification of curves in 2D and 3D via affine integral signatures, Acta. Appl. Math., 2010, 109(3): 903–937.

    Article  MathSciNet  MATH  Google Scholar 

  6. Shakiban C and Lloyd P, Signature curves statistics of DNA supercoils, Geometry, Integrability, and Quantization, 2004, 5: 203–210.

    MathSciNet  Google Scholar 

  7. Fels M and Olver P J, Moving coframes I: A practical algorithm, Acta Appl. Math., 1998, 51(2): 161–213.

    Article  MathSciNet  Google Scholar 

  8. Fels M and Olver P J, Moving coframes II: Regularization and theoretical foundations, Acta Appl. Math., 1999, 55(2): 127–208.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kogan I A, Inductive construction of moving frames, Contemp. Math., 2001, 285: 157–170.

    Article  Google Scholar 

  10. Olver P J, Classical Invariant Theory, London Math. Soc. Student Texts, vol. 44, Cambridge University Press, Cambridge, 1999.

    Book  Google Scholar 

  11. Mari-Beffa G and Olver P J, Differential invariants for parametrized projective surfaces, Commun. Anal. Geom., 1999, 7: 807–839.

    MathSciNet  MATH  Google Scholar 

  12. Mansfield E L, Algorithms for symmetric differential systems, Found. Comput. Math., 2001, 1(4): 335–383.

    MathSciNet  MATH  Google Scholar 

  13. Morozov O, Moving coframes and symmetries of differential equations, J. Phys. A: Mathematical and General, 2002, 35(12): 2965–2977.

    Article  MATH  Google Scholar 

  14. Hubert E and Kogan I A, Smooth and algebraic invariants of a group action: Local and global constructions, Found. Comput. Math., 2007, 7(4): 455–493.

    Article  MathSciNet  MATH  Google Scholar 

  15. Boutin M, Numerically invariant signature curves, Int. J. Computer Vision, 2000, 40(3): 235–248.

    Article  MATH  Google Scholar 

  16. Calabi E, Olver P J, Shakiban C, Tannenbaum A, and Haker S, Differential and numerically invariant signature curves applied to object recognition, Int. J. Computer Vision, 1998, 26(2): 107–135.

    Article  Google Scholar 

  17. Olver P J and Pohjanpelto J, Maurer-Cartan forms and the structure of Lie pseudo-groups, Selecta Math., 2005, 11(1): 99–126.

    Article  MathSciNet  MATH  Google Scholar 

  18. Olver P J and Pohjanpelto J, Moving frames for Lie pseudo-groups, Canadian J. Math., 2008, 60: 1336–1386.

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheh J, Olver P J, and Pohjanpelto J, Maurer-Cartan equations for Lie symmetry pseudo-groups of differential equations, J. Math. Phys., 2005, 46(2): 023504.

    Article  MathSciNet  Google Scholar 

  20. Cheh J, Olver P J, and Pohjanpelto J, Algorithms for differential invariants of symmetry groups of differential equations, Found. Comput. Math., 2008, 8(4): 501–532.

    Article  MathSciNet  MATH  Google Scholar 

  21. Morozov O I, Structure of symmetry groups via Cartan’s method: Survey of four approaches, SIGMA: Symmetry Integrability Geom. Methods Appl., 2005, 1: 006.

    MathSciNet  Google Scholar 

  22. Francis V and Olver P J, Application of Moving Frames to Lie Pseudo-Groups, University of Minnesota, 2009.

    Google Scholar 

  23. Olver P J, Lectures on moving frames, London Math. Soc. Lecture Note Series, 2011, 381: 207–246.

    MathSciNet  Google Scholar 

  24. Bartucetucetli M and Pantano P, Two-dimensional Burgers equation, Nuovo Cimento, 1983, 37(12): 433–438.

    MathSciNet  Google Scholar 

  25. Webb G M and Zank G P, Painleve analysis of the two dimensional Burgers equation, J. Phys. A: Mathematical and General, 1990, 23(23): 5465–5477.

    Article  MathSciNet  MATH  Google Scholar 

  26. Du X Y, New exact solutions for (2+1)-dimensional Burgers equation, Journal of Southwest China Normal University (Natural Science), 2006, 31(4): 29–31.

    Google Scholar 

  27. Zhou Z M, Tan X Y, and Zhang J, Lie point symmetry, similarity reduction, and exact solutions of (2+1)-dimensional generalized Burgers equation, Pure and Applied Mathematics, 2011, 27(1): 138–142.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqin Mei.

Additional information

This paper is supported by the National Natural Science Foundation of China under Grant No. 11201048 and the Fundamental Research Funds for the Central Universities.

This paper was recommended for publication by Editor GAO Xiao-Shan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, J., Wang, H. The generating set of the differential invariant algebra and Maurer-Cartan equations of a (2+1)-dimensional burgers equation. J Syst Sci Complex 26, 281–290 (2013). https://doi.org/10.1007/s11424-013-2031-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-013-2031-7

Key words

Navigation