Journal of Systems Science and Complexity

, Volume 26, Issue 6, pp 902–924 | Cite as

Variational discretization for optimal control problems governed by parabolic equations

  • Yanping ChenEmail author
  • Tianliang Hou
  • Nianyu Yi


This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations. The state and co-state are approximated by Raviart-Thomas mixed finite element spaces, and the authors do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control. A priori error estimates are derived for the state, the co-state, and the control. Some numerical examples are presented to confirm the theoretical investigations.

Key words

A priori error estimates mixed finite element methods optimal control problems parabolic equations variational discretization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ciarlet P G, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.zbMATHGoogle Scholar
  2. [2]
    Haslinger J and Neittaanmaki P, Finite Element Approximation for Optimal Shape Design, John Wiley and Sons, Chichester, UK, 1989.Google Scholar
  3. [3]
    Hinze M, Pinnau R, Ulbrich M, and Ulbrich S, Optimization with PDE Constraints, Springer-Verlag, Berlin, 2009.zbMATHGoogle Scholar
  4. [4]
    Lions J L, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.CrossRefzbMATHGoogle Scholar
  5. [5]
    Liu W B and Yan N, Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Science Press, Beijing, 2008.Google Scholar
  6. [6]
    Neittaanmaki P and Tiba D, Optimal Control of Nonlinear Parabolic Systems: Theroy, Algorithms, and Applications, Dekker M, New York, 1994.Google Scholar
  7. [7]
    Tiba D, Lectures on the optimal control of elliptic equations, University of Jyvaskyla Press, Finland, 1995.Google Scholar
  8. [8]
    Alt W, On the approximation of infinite optimization problems with an application to optimal control problems, Appl. Math. Optim., 1984, 12(1): 15–27.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Alt W and Machenroth U, Convergence of finite element approximations to state constrained convex parabolic boundary control problems, SIAM J. Control Optim., 1989, 27(4): 718–736.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Arada N, Casas E, and Tröltzsch F, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 2002, 23(2): 201–229.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Casas E, Optimal control in coefficients of elliptic equations with state constraints, Appl. Math. Optim, 1992, 26(1): 21–37.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Falk F S, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl, 1973, 44(1): 28–47.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Geveci T, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO. Anal. Numer., 1979, 13: 313–328.MathSciNetzbMATHGoogle Scholar
  14. [14]
    Hinze M, A variational discretization concept in control constrained optimization: The linearquadratic case, Comput. Optim. Appl., 2005, 30: 45–63.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Tiba D and Troltzsch F, Error estimates for the discretization of state constrained convex control problems, Numer. Funct. Anal. Optim., 1996, 17(9–10): 1005–1028.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Chen Y P and Dai Y Q, Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comput., 2009, 39(2): 206–221.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Meyer C and Rösch A, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 2004, 43(3): 970–985.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Becker R, Kapp H, and Rancher R, Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM J. Control Optim., 2000, 39(1): 113–132.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Ge L, Liu W B, and Yang D P, Adaptive finite element approximation for a constrained optimal control problem via multi-meshes, J. Sci. Comput, 2009, 41(2): 238–255.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Huang Y, Li R, Liu W B, and Yan N, Efficient discretization for finite element approximation of constrained optimal control problems, submitted.Google Scholar
  21. [21]
    Li R, Liu W B, Ma H, and Tang T, Adaptive finite element approximation of elliptic optimal control, SIAM J. Control Optim., 2002, 41(5): 1321–1349.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Liu W B and Tiba D, Error estimates for the finite element approximation of nonlinear optimal control problems, J. Numer. Func. Optim., 2001, 22: 953–972.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Liu W B and Yan N, A posteriori error analysis for convex distributed optimal control problems, Adv. Comp. Math., 2001, 15(1–4): 285–309.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Knowles G, Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim., 1982, 20(3): 414–427.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Liu W B and Yan N, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 2003, 93(3): 497–521.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    McKinght R S and Borsarge J, The Rite-Galerkin procedure for parabolic control problems, SIAM J. Control Optim., 1973, 11(3): 510–542.CrossRefGoogle Scholar
  27. [27]
    Chen Y, Superconvergence of mixed finite element methods for optimal control problems, Math. Comp., 2008, 77(263): 1269–1291.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    Chen Y, Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Inter. J. Numer. Meths. Eng., 2008, 75(8): 881–898.CrossRefzbMATHGoogle Scholar
  29. [29]
    Chen Y, Huang Y, Liu W B, and Yan N, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 2009, 42(3): 382–403.MathSciNetCrossRefGoogle Scholar
  30. [30]
    Chen Y, Yi N, and Liu W B, A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 2008, 46(5): 2254–2275.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Lions J L and Magenes E, Non Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin, 1972.CrossRefGoogle Scholar
  32. [32]
    Douglas J and Roberts J E, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 1985, 44(169): 39–52.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    Raviart P A and Thomas J M, A mixed finite element method for 2nd order elliptic problems, aspects of the finite element method, Lecture Notes in Math., Springer-Verlag, Berlin, 1977, 606: 292–315.Google Scholar
  34. [34]
    Brezzi F and Fortin M, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.CrossRefzbMATHGoogle Scholar
  35. [35]
    Garcia S F M, Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: The continuous-time case, Numer. Methods Partial Differential Eq., 1994, 10: 129–147.CrossRefzbMATHGoogle Scholar
  36. [36]

Copyright information

© Institute of Systems Science, Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Mathematical SciencesSouth China Normal UniversityGuangzhouChina
  2. 2.School of Mathematics and Computational ScienceXiangtan UniversityXiangtanChina

Personalised recommendations