Skip to main content
Log in

Variational discretization for optimal control problems governed by parabolic equations

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations. The state and co-state are approximated by Raviart-Thomas mixed finite element spaces, and the authors do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control. A priori error estimates are derived for the state, the co-state, and the control. Some numerical examples are presented to confirm the theoretical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ciarlet P G, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  2. Haslinger J and Neittaanmaki P, Finite Element Approximation for Optimal Shape Design, John Wiley and Sons, Chichester, UK, 1989.

    Google Scholar 

  3. Hinze M, Pinnau R, Ulbrich M, and Ulbrich S, Optimization with PDE Constraints, Springer-Verlag, Berlin, 2009.

    MATH  Google Scholar 

  4. Lions J L, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.

    Book  MATH  Google Scholar 

  5. Liu W B and Yan N, Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Science Press, Beijing, 2008.

    Google Scholar 

  6. Neittaanmaki P and Tiba D, Optimal Control of Nonlinear Parabolic Systems: Theroy, Algorithms, and Applications, Dekker M, New York, 1994.

    Google Scholar 

  7. Tiba D, Lectures on the optimal control of elliptic equations, University of Jyvaskyla Press, Finland, 1995.

    Google Scholar 

  8. Alt W, On the approximation of infinite optimization problems with an application to optimal control problems, Appl. Math. Optim., 1984, 12(1): 15–27.

    Article  MathSciNet  MATH  Google Scholar 

  9. Alt W and Machenroth U, Convergence of finite element approximations to state constrained convex parabolic boundary control problems, SIAM J. Control Optim., 1989, 27(4): 718–736.

    Article  MathSciNet  MATH  Google Scholar 

  10. Arada N, Casas E, and Tröltzsch F, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 2002, 23(2): 201–229.

    Article  MathSciNet  MATH  Google Scholar 

  11. Casas E, Optimal control in coefficients of elliptic equations with state constraints, Appl. Math. Optim, 1992, 26(1): 21–37.

    Article  MathSciNet  MATH  Google Scholar 

  12. Falk F S, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl, 1973, 44(1): 28–47.

    Article  MathSciNet  MATH  Google Scholar 

  13. Geveci T, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO. Anal. Numer., 1979, 13: 313–328.

    MathSciNet  MATH  Google Scholar 

  14. Hinze M, A variational discretization concept in control constrained optimization: The linearquadratic case, Comput. Optim. Appl., 2005, 30: 45–63.

    Article  MathSciNet  MATH  Google Scholar 

  15. Tiba D and Troltzsch F, Error estimates for the discretization of state constrained convex control problems, Numer. Funct. Anal. Optim., 1996, 17(9–10): 1005–1028.

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen Y P and Dai Y Q, Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comput., 2009, 39(2): 206–221.

    Article  MathSciNet  MATH  Google Scholar 

  17. Meyer C and Rösch A, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 2004, 43(3): 970–985.

    Article  MathSciNet  MATH  Google Scholar 

  18. Becker R, Kapp H, and Rancher R, Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM J. Control Optim., 2000, 39(1): 113–132.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ge L, Liu W B, and Yang D P, Adaptive finite element approximation for a constrained optimal control problem via multi-meshes, J. Sci. Comput, 2009, 41(2): 238–255.

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang Y, Li R, Liu W B, and Yan N, Efficient discretization for finite element approximation of constrained optimal control problems, submitted.

  21. Li R, Liu W B, Ma H, and Tang T, Adaptive finite element approximation of elliptic optimal control, SIAM J. Control Optim., 2002, 41(5): 1321–1349.

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu W B and Tiba D, Error estimates for the finite element approximation of nonlinear optimal control problems, J. Numer. Func. Optim., 2001, 22: 953–972.

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu W B and Yan N, A posteriori error analysis for convex distributed optimal control problems, Adv. Comp. Math., 2001, 15(1–4): 285–309.

    Article  MathSciNet  MATH  Google Scholar 

  24. Knowles G, Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim., 1982, 20(3): 414–427.

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu W B and Yan N, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 2003, 93(3): 497–521.

    Article  MathSciNet  MATH  Google Scholar 

  26. McKinght R S and Borsarge J, The Rite-Galerkin procedure for parabolic control problems, SIAM J. Control Optim., 1973, 11(3): 510–542.

    Article  Google Scholar 

  27. Chen Y, Superconvergence of mixed finite element methods for optimal control problems, Math. Comp., 2008, 77(263): 1269–1291.

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen Y, Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Inter. J. Numer. Meths. Eng., 2008, 75(8): 881–898.

    Article  MATH  Google Scholar 

  29. Chen Y, Huang Y, Liu W B, and Yan N, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 2009, 42(3): 382–403.

    Article  MathSciNet  Google Scholar 

  30. Chen Y, Yi N, and Liu W B, A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 2008, 46(5): 2254–2275.

    Article  MathSciNet  MATH  Google Scholar 

  31. Lions J L and Magenes E, Non Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin, 1972.

    Book  Google Scholar 

  32. Douglas J and Roberts J E, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 1985, 44(169): 39–52.

    Article  MathSciNet  MATH  Google Scholar 

  33. Raviart P A and Thomas J M, A mixed finite element method for 2nd order elliptic problems, aspects of the finite element method, Lecture Notes in Math., Springer-Verlag, Berlin, 1977, 606: 292–315.

    Google Scholar 

  34. Brezzi F and Fortin M, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  35. Garcia S F M, Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: The continuous-time case, Numer. Methods Partial Differential Eq., 1994, 10: 129–147.

    Article  MATH  Google Scholar 

  36. Li R and Liu W B, http://circus.math.pku.edu.cn/AFEPack.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

The first author and the second author are supported by the National Natural Science Foundation of China under Grant No. 11271145, Foundation for Talent Introduction of Guangdong Provincial University, Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20114407110009, and the Project of Department of Education of Guangdong Province under Grant No. 2012KJCX0036. The third author is partially supported by Hunan Education Department Key Project 10A117 and the National Natural Science Foundation of China under Grant Nos. 11126304 and 11201397.

This paper was recommended for publication by Editor YAN Ningning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Hou, T. & Yi, N. Variational discretization for optimal control problems governed by parabolic equations. J Syst Sci Complex 26, 902–924 (2013). https://doi.org/10.1007/s11424-013-1166-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-013-1166-x

Key words

Navigation