Skip to main content
Log in

Signatures of universal characteristics of fractal fluctuations in global mean monthly temperature anomalies

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper proposes a general systems theory for fractals visualising the emergence of successively larger scale fluctuations resulting from the space-time integration of enclosed smaller scale fluctuations. Global gridded time series data sets of monthly mean temperatures for the period 1880–2007/2008 are analysed to show that data sets and corresponding power spectra exhibit distributions close to the model predicted inverse power law distribution. The model predicted and observed universal spectrum for interannual variability rules out linear secular trends in global monthly mean temperatures. Global warming results in intensification of fluctuations of all scales and manifested immediately in high frequency fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Mandelbrot, Les Objets Fractals: Forme, Hasard et Dimension, Flammarion, Paris, 1975.

    MATH  Google Scholar 

  2. P. C. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A, 1988, 38: 364–374.

    Article  MathSciNet  Google Scholar 

  3. M. Schroeder, Fractals, Chaos and Power-laws, W. H. Freeman and Co., N. Y., 1990.

    Google Scholar 

  4. A. M. Selvam, Deterministic chaos, fractals and quantumlike mechanics in atmospheric flows, Can. J. Phys., 1990, 68: 831–841.

    Google Scholar 

  5. A. M. Selvam, A general systems theory for chaos, quantum mechanics and gravity for dynamical systems of all space-time scales, Electromagnetic Phenomena, 2005, 52(15): 160–176.

    Google Scholar 

  6. A. M. Selvam, Chaotic Climate Dynamics, Luniver Press, UK, 2007.

    Google Scholar 

  7. A. M. Selvam and S. Fadnavis, Signatures of a universal spectrum for atmospheric inter-annual variability in some disparate climatic regimes, Meteorology and Atmospheric Physics, 1998, 66: 87–112.

    Article  Google Scholar 

  8. P. Andriani and B. McKelvey, Beyond Gaussian averages: Redirecting management research toward extreme events and power laws, Journal of International Business Studies, 2007, 38: 1212–1230.

    Article  Google Scholar 

  9. W. H. Greene, Econometric Analysis, 5th ed., Prentice-Hall, Englewood Cliffs, NJ, 2002.

    Google Scholar 

  10. A. Clauset, C. R. Shalizi, and M. E. J. Newman, Power-law distributions in empirical data, arXiv: 0706.1062v1 [physics.data-an], 2007.

  11. M. Buchanan, Power laws and the new science of complexity management, Strategy and Business Issue, 2004, 34: 70–79.

    Google Scholar 

  12. A. M. Selvam, Fractal fluctuations and statistical normal distribution, Fractals, 2009, 17(3): 333–349.

    Article  MathSciNet  Google Scholar 

  13. D. Sornette, L. Knopoff, Y. Kagan, and C. Vanneste, Rank-Ordering statistics of extreme events: Application to the distribution of large earthquakes, arXiv: Cond-mat/9510035v1, 6 Oct 1995.

  14. A. M. Selvam and S. Fadnavis, Superstrings, cantorian-fractal spacetime and quantum-like chaos in atmospheric flows, Chaos Solitons and Fractals, 1999, 10: 1321–1334.

    Article  MATH  Google Scholar 

  15. A. M. Selvam, Quantum-like chaos in prime number distribution and in turbulent fluid flows, Apeiron, 2001, 8: 29–64.

    Google Scholar 

  16. A. M. Selvam, Signatures of quantum-like chaos in spacing intervals of non-trivial Riemann zeta zeros and in turbulent fluid flows, Apeiron, 2001, 8: 10–40.

    Google Scholar 

  17. A. M. Selvam, Cantorian fractal space-time fluctuations in turbulent fluid flows and the kinetic theory of gases, Apeiron, 2002, 9: 1–20.

    Google Scholar 

  18. A. M. Selvam, Quantumlike chaos in the frequency distributions of the bases A, C, G, T in Drosophila DNA, Apeiron, 2002, 9: 103–148.

    Google Scholar 

  19. A. M. Selvam, Quantumlike chaos in the frequency distributions of the bases A, C, G, T in human chromosome 1 DNA, Apeiron, 2004, 11: 134–146.

    Google Scholar 

  20. A. M. Selvam, D. Sen, and S. M. S. Mody, Critical fluctuations in daily incidence of acute myocardial infarction, Chaos, Solitons and Fractals, 2000, 11: 1175–1182.

    Article  MATH  Google Scholar 

  21. C. Ruhla, The Physics of Chance, Oxford University Press, UK, 1992.

    Google Scholar 

  22. T. Phillips, The mathematical uncertainty principle, Monthly Essays on Mathematical Topics, American Mathematical Society, 2005, 11.

  23. K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering, 3rd ed., Cambridge University Press, USA, 2006.

    Google Scholar 

  24. J. Maddox, Licence to slang Copenhagen? Nature, 1988, 332: 581.

    Article  Google Scholar 

  25. J. Maddox, Can quantum theory be understood?, Nature, 1993, 361: 493.

    Article  Google Scholar 

  26. A. Rae, Quantum-Physics: Illusion or Reality? Cambridge University Press, New York, 1988.

    Google Scholar 

  27. M. J. Feigenbaum, Universal behavior in nonlinear systems, Los Alamos Sci., 1980, 1: 4–27.

    MathSciNet  Google Scholar 

  28. A. A. Townsend, The Structure of Turbulent Shear Flow, 2nd ed. Cambridge University Press, London, U K, 1956: 115–130.

    MATH  Google Scholar 

  29. G. Grossing, Quantum systems as order out of chaos phenomena, Il Nuovo Cimento, 1989, 103B: 497–510.

    MathSciNet  Google Scholar 

  30. P. Steinhardt, Crazy crystals, New Scientist, 1997, 153: 32–35.

    Google Scholar 

  31. A. M. Selvam, Universal quantification for deterministic chaos in dynamical systems, Applied Math. Modelling, 1993, 17: 642–649.

    Article  MATH  Google Scholar 

  32. K. W. Ford, Basic Physics, Blaisdell Publishing Company, Massachusetts, USA, 1968.

    Google Scholar 

  33. A. K. Kikoin and I. K. Kikoin, Molecular Physics, Mir Publishers, Moscow, 1978.

    Google Scholar 

  34. P. Dennery, An Introduction to Statistical Mechanics, George Allen and Unwin Ltd., London, 1972.

    Google Scholar 

  35. B. Yavorsky and A. Detlaf, Handbook of Physics, Mir Publishers, Moscow, 1975.

    Google Scholar 

  36. W. G. Rosser, An Introduction to Statistical Physics, Ellis Horwood Publishers, Chichester, West Sussex, England, 1985.

    Google Scholar 

  37. A. M. Guenault, Statistical physics, Routledge, London, 1988.

    Google Scholar 

  38. M. C. Gupta, Statistical Thermodynamics, Wiley Eastern Ltd., New Delhi, 1990.

    Google Scholar 

  39. T. C. Dorlas, Statistical Mechanics, Institute of Physics Publishing, Bristol, London, 1999.

    MATH  Google Scholar 

  40. B. S. Chandrasekhar, Why are Things the Way They are? Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  41. T. C. Peterson and R. S. Vose, An overview of the global historical climatology network temperature database, Bull. Am. Meteorol. Soc., 1997, 78: 2837–2849.

    Article  Google Scholar 

  42. T. C. Peterson, R. S. Vose, R. Schmoyer, and V. Razuvae, Global historical climatology network (GHCN) quality control of monthly temperature data, Int. J. Climatol., 1998, 18: 1169–1179.

    Article  Google Scholar 

  43. T. C. Peterson, T. R. Karl, P. F. Jamason, et al., The first difference method: Maximizing station density for the calculation of long-term global temperature change, Journal of Geophysical Research, 1998, 103: 25967–25974.

    Article  Google Scholar 

  44. A. F. Jenkinson, A Powerful Elementary Method of Spectral Analysis for Use with Monthly, Seasonal or Annual Meteorological Time Series, Meteorological office, branch memorandum No. 57: London, 1977.

  45. M. R. Spiegel, Statistics, Schaums Outline Series in Mathematics, McGraw-Hill, NY, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Selvam.

Additional information

This paper was recommended for publication by Editor Jing HAN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvam, A.M. Signatures of universal characteristics of fractal fluctuations in global mean monthly temperature anomalies. J Syst Sci Complex 24, 14–38 (2011). https://doi.org/10.1007/s11424-011-9020-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-011-9020-5

Key words

Navigation