Skip to main content
Log in

Infer objective function of glycerol metabolism in klebsiella pneumoniae basing on bilevel programming

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Mathematical modelling of cellular metabolism plays an important role in understanding biological functions and providing identification of targets for biotechnological modification. This paper proposes a nonlinear bilevel programming (NBP) model to infer the objective function of anaerobic glycerol metabolism in Klebsiella Pneumoniae (K. Pneumoniae) for 1, 3-propanediol (1, 3-PD) production. Based on the Kuhn-Tucker optimality condition of the lower level problem, NBP is transformed into a nonlinear programming with complementary and slackness conditions. The authors give the existence theorem of solutions to NBP. An efficient algorithm is proposed to solve NBP and its convergence is also simply analyzed. Numerical results reveal some interesting conclusions, e.g., biomass production is the main force to drive glycerol metabolism, and the objective functions, which are obtained in term of several different groups of flux distributions, are similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bibel, K. Memzel, and A. P. Zeng, Microbial production of 1, 3-propanediol, Appl. Microbiol. Biotechnol., 1999, 52(3): 289–297.

    Article  Google Scholar 

  2. K. Menzel, A. P. Zeng, and W. D. Deckwer, High concentration and productivity of 1, 3-propanediol from continuous fermentation of glycerol by Klebsiella Pneumoniae, Enzyme Microb. Technol., 1997, 20(2): 82–86.

    Article  Google Scholar 

  3. A. P. Zeng and H. Biebl, Bulk-chemicals from biotechnology: The case of 1, 3-propanediol production and the new trends, Adv. Biochem. Eng. Biotechnol., 2002, 74: 239–259.

    Google Scholar 

  4. J. Maczek, S. Junne, P. Nowak, et al., Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae, Bioprocess Biosyst. Eng., 2006, 29(4): 241–252.

    Article  Google Scholar 

  5. P. Özkan, B. Sariyar, F. Ö. Ütkür, et al., Metabolic flux analysis of recombinant protein overproduction in Escherichia coli, Biochem. Eng. J., 2005, 22(2): 167–195.

    Article  Google Scholar 

  6. A. M. Sanchez, G. N. Bennett, A.M. Sánchez, et al., Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains, Metab. Eng., 2006, 8(3): 209–226.

    Article  Google Scholar 

  7. T. Shirai, A. Nakato, K. Nagahisa, et al., Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria, Metab. Eng., 2005, 7(2): 59–69.

    Article  Google Scholar 

  8. D. A. Beard, S. D. Liang, and H. Qian, Energy balance for analysis of complex metabolic networks, Biophys. J., 2002, 8(3): 79–86.

    Article  Google Scholar 

  9. S. R. Hejazi, A. Memariani, G. Jahanshanloo, and M. M. Sepehri, Linear bilevel programming solution by genetic algorithm, Comput. & Oper. Res., 2002, 29(13): 1913–1925.

    Article  MathSciNet  Google Scholar 

  10. J. F. Bard, Some properties of the bilevel programming problem, J. Optim. Theory Appl., 1991, 68(2): 371–378.

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. B. Lü, T. S. Hu, G. M. Wang, and Z. P. Wan, A penalty function method based on Kuhn-Tucker condition for solving linear bilevel programming, Appl. Math. Comput., 2007, 188(1): 808–813.

    Article  MathSciNet  Google Scholar 

  12. K. Menzel, A. P. Zeng, and W. D. Deckwer, Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella Pneumoniae in anaerobic continuous culture: I. The phenomena and characterization of oscillation and hysteresis, Biotechnol. Bioeng., 1996, 52(5): 549–560.

    Article  Google Scholar 

  13. K. Ahrens, K. Menzel, W. D. Deckwer, et al., Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella Pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1, 3-propanediol formation, Biotechnol. Bioeng., 1998, 59(5): 544–552.

    Article  Google Scholar 

  14. Q. R. Zhang, Z. L. Xiu, and A. P. Zeng, Optimization of microbial production of 1, 3-propanediol by Klebsiella Pneumoniae under anaerobic and microaerobic conditions by metabolic flux analysis, J. Chem. Ind. Eng., 2006, 57(6): 1403–1409.

    Google Scholar 

  15. J. F. Bard, Practical Bilevel Optimizaiton: Algorithm and Application (Nonconvex Optimization and Its Application), Kluwer Academic Publishers, The Netherlands, 1998.

    Google Scholar 

  16. M. A. Amouzegar, A global optimizaiton method for nonlinear bilevel programming problem, IEEE Trans. on Syst., Man, Cybernet.-Part B: Cybernet., 1999, 29(6): 771–777.

    Article  Google Scholar 

  17. J. Fliege and L. N. Vicente, Multicriteria approach to bilevel optimization, J. Optim. Theory Appl. 2006, 131(2): 209–225.

    Article  MATH  MathSciNet  Google Scholar 

  18. Z. H. Gümüs and C. A. Floudas, Gloabal optimization of nonlinear bilevel programming, J. Global optim., 2001, 20(1): 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. W. Lan, U. P. Wen, H. S. Shin, and E. S. Lee, A hybrid neural network approach to bilevel programming problems, Appl. Mat. Lett., 2007, 20(8): 880–884.

    Article  MATH  Google Scholar 

  20. G. M. Wang, X. J. Wang, Z. P. Wan, and Y. B. Lü, A globally convergent algorithm for solving a class of bilevel nonlinear programming problem, Appl. Math. Comput., 2007, 188(1): 166–172.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Papanikolaou, P. Ruiz-Sanchez, B. Pariset, et al., High production of 1, 3-propanediol from industrial glycerol by an improvedly isolated Clostridium butyricum strain, J. Biotechnol., 2000, 77(2–3): 191–208.

    Article  Google Scholar 

  22. A. P. Burgard and C. D. Maranas, Optimization-based framework for inferring and testing hypothesized metabolic objective functions, Biotechnol. Bioeng., 2003, 82(6): 670–677.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohua Gong.

Additional information

This research is supported by the National Natural Science Foundation of China under Grant Nos. 10871033 and 10671126.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Z., Yu, Y. & Feng, E. Infer objective function of glycerol metabolism in klebsiella pneumoniae basing on bilevel programming. J Syst Sci Complex 23, 334–342 (2010). https://doi.org/10.1007/s11424-010-8235-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-010-8235-1

Key words

Navigation