Skip to main content
Log in

Role of different system delays on ecological food chain dynamics: Mathematical modelling and analysis

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper studies a three tier ecological food chain model consisting of nutrient, autotroph, and herbivore populations. Regeneration of nutrient from dead autotroph and herbivore biomass by decomposers present in the soil is included. The time required for maturation of the herbivore population is incorporated as a distributed time delay. Next, the authors introduce the time lag required for regeneration of nutrient from the dead herbivore as a discrete time delay. Stability and bifurcation behavior of the one- and two-delay models are carried out and a comparative study of the significance of these delays in controlling the system dynamics is performed. Numerical simulations are done to justify analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. L. Smith, Food Webs, Chapman and Hall, London, UK, 1982.

    Google Scholar 

  2. A. K. Sarkar, D. Mitra, and A. B. Roy, Permanence and oscilatory co-existence of a detritus-based prey predator model, Ecol. Model., 1991, 53: 147–156.

    Article  Google Scholar 

  3. A. K. Sarkar and A. B. Roy, Oscilatory behavior in a resource-based plant-herbivore model with random herbivor attack, Ecol. Model., 1993, 68: 213–226.

    Article  Google Scholar 

  4. D. Ghosh and A. K. Sarkar, Oscillatory behaviour of an autotroph herbivore system with a type-III uptake function, Int. J. Syst. Sci., 1997, 28(3): 259–264.

    Article  Google Scholar 

  5. D. Ghosh and A. K. Sarkar, Qualitative analysis of autotroph herbivore system with nutrient diffusion, Korean J. Comput. Appl. Math., 1999, 6: 589–599.

    MATH  MathSciNet  Google Scholar 

  6. D. Mukherjee, S. Ray, and D. K. Sinha, Bifurcation analysis of a detritus-based ecosystem with time delay, J. Biol. Syst., 2000, 8(3): 255–261.

    Article  MATH  Google Scholar 

  7. D. Ludwig, D. D. Jones, and C. S. Holling, Qualitayive anlysis of insect outbreak systems: The spruce budworm and forest, J Anim. Eco., 1978, 47: 315–332.

    Article  Google Scholar 

  8. M. J. Crawley, Herbivory: The Dynamics of Animal Plant Interaction, Studies in Ecology, University of Califonia Press, Berkley, CA, 1983, 10.

    Google Scholar 

  9. M. Farkas and H. I. Freedman, The stable coexistence of competeting species on a renewable resource, J. Math. Anal. Appl., 1989, 138, 461–472.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Sikder and A. B. Roy, Limit cycles in prey predator systems, Appl. Math. Lett., 1993, 6(3): 91–95.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Muratori and S. Rinaldi, Low and high-frequency oscilations in three dimensional food chain system, SIAM J. Appl. Math., 1992, 52(52): 1688–1706.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Bhattacharyya and B. Mukhopadhyay, Oscillation and persistence in a mangrove ecosystem in presence of delays, J. Biol. Syst., 2003, 11(4): 351–364.

    Article  MATH  Google Scholar 

  13. M. Bandyopadhyay, R. Bhattacharyya, and B. Mukhopadhyay, Dynamics of an autotroph-herbivore ecosystem with nutrient recycling, Ecol. Model., 2004, 176: 201–209.

    Article  Google Scholar 

  14. G. Hallam, Structural sensitivity of grazing formulation in nutrient controlled plankton models, J. Math. Biol., 1978, 5: 261–280.

    MathSciNet  Google Scholar 

  15. T. Powell and P. J. Richardson, Temporal variation, spatial heterogeneity and competition for resources in plankton systems: Theoretical models, Am. Nat., 1985, 125: 431–463.

    Article  Google Scholar 

  16. E. Beltrami and T. O. Carroll, Modelling the role of viral diseases in recurrent phytoplankton blooms, J. Math. Biol., 1994, 32: 857–863.

    Article  MATH  Google Scholar 

  17. S. Ruan, Persistence and co-existence in zooplankton phytoplankton nutrient models with instantaneous nutrient recycling, J. Math. Biol., 1993, 31: 633–654.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Ruan, The effect of delays on stability and persistence in plankton models, Nonlinear Anal., 1995, 24: 575–585.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Ruan, Oscilations in plankton models with nutrient recycling, J. Theor. Biol., 2001, 208: 15–26.

    Article  Google Scholar 

  20. S. Ruan and G. Wolkowicz, Uniform persistence in plankton models with delayed nutrient recycling, Canad. Appl. Math. Quart., 1995, 3: 219–235.

    MATH  MathSciNet  Google Scholar 

  21. S. R. J. Jang, Dynamics of variable-yield nutrient phytoplankton zooplankton models with nutrient recycling and self-shedding, J. Math. Biol., 2000, 40: 229–250.

    Article  MATH  MathSciNet  Google Scholar 

  22. O. Pardo, Global stability for a phytoplankton nutrient system, J. Biol. Syst., 2000, 8(2): 195–209.

    Article  Google Scholar 

  23. B. Mukhopadhyay and R. Bhattacharyya, A delay-diffution model of marine plankton ecosystem exhibiting cyclic nature of blooms, J. Biol. Phy., 2005, 31(1): 3–22.

    Article  MathSciNet  Google Scholar 

  24. B. Mukhopadhyay and R. Bhattacharyya, Modelling phytoplankton allelopathy in a nutrientplankton model with spatial heterogeneity, Ecol. Model., 2006, 198(1–2): 163–173.

    Article  Google Scholar 

  25. B. Mukhopadhyay and R. Bhattacharyya, Modelling the role of diffusion coefficients on Turing instability in a reaction-diffusion prey-predator system, Bull. Math. Biol., 2006, 68: 293–313.

    Article  MathSciNet  Google Scholar 

  26. P. Colinvaux, Ecology-I, Wiley, USA, 1993.

    Google Scholar 

  27. R. M. Nisbet, J. Mckinstry, and W. S. C. Gurney, A strategic model of material cycling in a close ecosystem, Math. Biosci., 1983, 64: 99–113.

    Article  MATH  Google Scholar 

  28. Y. M. Svirezhev and D. O. Logofet, Stability of Biological Communities, Mir, Moscow, 1983.

    Google Scholar 

  29. D. L. De Angelis, Dynamics of Nutrient Recycling and Food Webs, Chapman and Hall, London, 1992.

    Google Scholar 

  30. D. Ghosh and A. K. Sarkar, Stability and osilations in a resource-based model of two interacting species with nutrient cycling, Ecol. Model., 1998, 107: 25–33.

    Article  Google Scholar 

  31. E. Beretta, G. I. Bischi, and F. Solimano, Stability in chemostat equations with delayed nutrient recycling, J. Math. Biol., 1990, 28: 99–111.

    Article  MATH  MathSciNet  Google Scholar 

  32. G. I. Bischi, Effects of time lag on transient characteristics of a nutrient recycling model, Math. BioSci., 1992, 109: 151–175.

    Article  MATH  Google Scholar 

  33. D. L. De Angelis, S. M. Bartell, and A. L. Brenkert, Effect of nutrient recycling and food chain lenght on the resilience, Am. Nat., 1989, 134: 778–805.

    Article  Google Scholar 

  34. N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge Univ. Press, Cambridge, 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bhattacharyya.

Additional information

This research is supported by the Department of Science and Technology, Ministry of Human Resource Development, Govt. of India under Grant No. SR/S4/MS:296/05.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, R., Bera, A. & Mukhopadhyay, B. Role of different system delays on ecological food chain dynamics: Mathematical modelling and analysis. J Syst Sci Complex 23, 727–737 (2010). https://doi.org/10.1007/s11424-010-8190-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-010-8190-x

Key words

Navigation