Skip to main content
Log in

Stochastic synchronization of circadian rhythms

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Models of circadian genetic oscillators involving interlinked feedback processes in molecular level genetic networks in Drosophila melanogaster and Neurospora crassa are studied, and mechanisms whereby synchronization can arise in an assembly of cells are examined. The individual subcellular circadian oscillatory processes are stochastic in nature due to the small numbers of molecules that are involved, and are subject to large fluctuations. The authors investigate and present the simulations of the stochastic dynamics of ensembles of clock-regulating proteins in different nuclei that communicate via ancillary small molecules, environmental parameters, additive cellular noise, or through diffusive processes. The results show that the emergence of collective oscillations is a macroscopic observable which has its origins in the microscopic coupling between distinct cellular oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Dunlap, Molecular bases for circadian clocks review, Cell, 1999, 96: 271–290.

    Article  Google Scholar 

  2. P. E. Hardin, J. C. Hall, and M. Rosbash, Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels, Nature, 1990, 343: 536–540.

    Article  Google Scholar 

  3. S. M. Reppert and D. R. Weaver, Coordination of circadian timing in mammals, Nature, 2002, 418: 935–941.

    Article  Google Scholar 

  4. M. W. Young and S. A. Kay, Time zones: A comparative genetics of circadian clocks, Nat. Rev. Genet., 2001, 2: 702–715.

    Article  Google Scholar 

  5. H. Wijnen and M. W. Young, Interplay of circadian clocks and metabolic rhythms, Annu. Rev. Genet., 2006, 40: 409–448.

    Article  Google Scholar 

  6. A. Goldbeter, Computational approaches to cellular rhythms, Nature, 2002, 420: 238–245.

    Article  Google Scholar 

  7. D. Gonze and A. Goldbeter, Circadian rhythms and molecular noise, Chaos, 2006, 16: 026110.

    Article  Google Scholar 

  8. D. B. Forger, D. A. Dean, K. Gurdziel, et al., Development and validation of computational models for mammalian circadian oscillators, OMICS: A Journal of Integrative Biology, 2003, 7: 387–400.

    Article  Google Scholar 

  9. A. Goldbeter, A Model for circadian oscillations in the drosophila period protein (PER), Proc. R. Soc. Lond. B, 1995, 261: 319–324.

    Article  Google Scholar 

  10. L. Glass, Synchronization and rhythmic processes in physiology, Nature, 2001, 410: 277–284.

    Article  Google Scholar 

  11. T. Zhou, L. Chen, and K. Aihara, Molecular communication through stochastic synchronization induced by extracellular fluctuations, Phys. Rev. Lett., 2005, 95: 178103–178107.

    Article  Google Scholar 

  12. J. E. Rutila, V. Suri, W. V. So, et al., CYCLE Is a second bhlh-pas clock protein essential for circadian rhythmicity and transcription of drosophila period and timeless, Cell, 1998, 93: 805.

    Article  Google Scholar 

  13. T. K. Darlington, K.W. Smith, M. F. Ceriani, et al., Closing the Circadian Loop: CLOCK-Induced Transcription of Its Own Inhibitors per and tim, Science, 1998, 280: 1599–1603.

    Article  Google Scholar 

  14. T. A. Bargiello, L. Saez, M. K. Baylies, et al., The Drosophila clock gene per affects intercellular junctional communication, Nature, 1987, 328: 686–691.

    Article  Google Scholar 

  15. M. K. Baylies, T. A. Bargiello, F. R. Jackson, and M. W. Young, Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock, Nature, 1987, 326: 390–392.

    Article  Google Scholar 

  16. Q. Yu, A. C. Jacquier, M. Hamblen, et al., Molecular mapping of point mutations in the period gene that stop or speed up biological clocks in Drosophila melanogaster, Proc. Nat. Acad. Sci., 1987, 84: 784–788.

    Article  Google Scholar 

  17. G. Wietzel and L. Rensing, Evidence for cellular circadian rhythms in isolated fluorescent dyelabelled salivary glands of wild type and an arrhythmic mutant of Drosophila melanogaster, J. Comp. Physiol., 1981, 143: 229–235.

    Google Scholar 

  18. H. B. Dowse, J. C. Hall, and J. M. Ringo, Circadian and ultradian rhythms inperiod mutants of Drosophila melanogaster, Behav. Genet., 1987, 17: 19–35.

    Article  Google Scholar 

  19. H. R. Ueda, K. Hirose, and M. Iino, Intercellular coupling mechanism for synchronized and noiseresistant circadian oscillators, J. Theor. Biol., 2002, 216: 501–512.

    Article  MathSciNet  Google Scholar 

  20. F. T. Glaser and R. Stanewsky, Temperature synchronization of the drosophila circadian clock, Curr. Biol., 2005, 15: 1352–1363.

    Article  Google Scholar 

  21. L. Chen, R. Wang, T. Zhou, and K. Aihara, Noise-induced cooperative behavior in a multi-cell system, Bioinformatics, 2005, 21: 2722–2729.

    Article  Google Scholar 

  22. D. Gonze, J. Halloy, and A. Goldbeter, Emergence of coherent oscillations in stochastic models for circadian rhythms, Physica A, 2004, 342: 221–233.

    Article  Google Scholar 

  23. N. Y. Garceau, Y. Liu, J. J. Loros, and J. C. Dunlap, Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein frequency, Cell, 1997, 89: 469–476.

    Article  Google Scholar 

  24. H. H. McAdams and A. Arkin, Stochastic mechanisms in gene expression, Proc. Natl. Acad. Sci., 1997, 94: 814–819.

    Article  Google Scholar 

  25. C. V. Rao, D. M. Wolf, and A. P. Arkin, Control, exploitation and tolerance of intracellular noise, Nature, 2002, 420: 231–237.

    Article  Google Scholar 

  26. D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 1977, 81, 2340–2361.

    Article  Google Scholar 

  27. D. T. Gillespie, General method for numerically simulating stochastic time evolution of coupled chemical-reactions, J. Comp. Phys., 1976, 22: 403–434.

    Article  MathSciNet  Google Scholar 

  28. D. T. Gillespie, Stochastic Simulation of Chemical Kinetics, Annu. Rev. Phys. Chem., 2007, 58: 35–55.

    Article  Google Scholar 

  29. D. Bratsun, D. Volfson, L. S. Tsimring and J. Hasty, Delay-induced stochastic oscillations in gene regulation, Proc. Natl. Acad. Sci., 2005, 102: 14593–14598.

    Article  Google Scholar 

  30. R. Ramaswamy, R. K. Brojen Singh, C. Zhou, and J. Kurths, Stochastic Synchronization, Nonlinear Dynamics and Chaos: Advances and Perspectives, M. Thiel, et al., Springer Verlag, Berlin, 2010.

    Google Scholar 

  31. A. Nandi, G. Santhosh, R. K. B. Singh, and R. Ramaswamy, Effective mechanisms for the synchronization of stochastic oscillators, Phys. Rev. E, 2007, 76: 041136.

    Article  MathSciNet  Google Scholar 

  32. M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 1996, 76: 1804–1807.

    Article  Google Scholar 

  33. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science, Cambridge University Press, Cambridge, 2001.

    Book  MATH  Google Scholar 

  34. H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entertainment, Prog. Theor. Phys., 1986, 76: 576–81.

    Article  MathSciNet  Google Scholar 

  35. L. M. Pecora and T. L. Caroll, Synchronization in chaotic systems, Phys. Rev. Lett., 1990, 64: 821–24.

    Article  MathSciNet  Google Scholar 

  36. M. G. Rosenblum and A. S. Pikovsky, Controlling synchronization in an ensemble of globally coupled oscillators, Phys. Rev. Lett., 2004, 92: 114102.

    Article  Google Scholar 

  37. D. Gonze, J. Halloy, J. C. Leloup, and A. Goldbeter, Stochastic models for circadian rhythms: Effect of molecular noise on periodic and chaotic behavior, C. R. Biol., 2003, 326: 189–203.

    Article  Google Scholar 

  38. C. Zhou, J. Kurths, I. Z. Kiss, and J. L. Hudson, Noise-enhanced phase synchronization of chaotic oscillators, Phy. Rev. Lett., 2002, 89: 014101.

    Article  Google Scholar 

  39. I. Fischer, R. Vicente, J. M. Buldu, et al., Zero-lag long-range synchronization via dynamical relaying, Phys. Rev. Lett., 2006, 97: 123902.

    Article  Google Scholar 

  40. I. G. Da Silva, J. M. Buldu, C. R. Mirasso, and J. Garcia-Ojalvo, Synchronization by dynamical relaying in electronic circuit arrays, Chaos, 2006, 15: 043113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RajKumar Brojen Singh.

Additional information

This research is supported by the Department of Science and Technology (DST), Government of India under the Fast Track Scheme awarded to RKBS and by the University Grants Commission scholarship to VS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.B., Singh, V. & Ramaswamy, R. Stochastic synchronization of circadian rhythms. J Syst Sci Complex 23, 978–988 (2010). https://doi.org/10.1007/s11424-010-0208-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-010-0208-x

Key words

Navigation