Skip to main content
Log in

Estimation of time dependent carbon transfer coefficients using net ecosystem exchange data

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Time dependent carbon transfer coefficients are estimated using ecosystem exchange data by minimizing over variable observational intervals, Kalman filter, and variational minimization techniques. Transfer coefficients are determined by application of estimation procedures to subintervals from a partition of the observational time period, minimizing the variance of analyzed errors without the imposition of a priori transfer coefficient models in Kalman filters, and minimization with respect to transfer coefficients in variational fit-to-data functionals. Results are compared between methods and seasonal variability is observed in the transfer coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Baldocchi, Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future, Global Change Biol, 2003, 9: 479–492.

    Article  Google Scholar 

  2. A. S. Kowalski, M. Sartore, R. Burlett, P. Berbigier, and D. Loustau, The annual carbon budget of a French pine forest (Pinus pinaster) following harvest, Global Change Biol, 2003, 9(7): 1051–1065.

    Article  Google Scholar 

  3. K. L. Clark, W. P. Cropper, and H. L. Gholz, Evaluation of modeled carbon fluxes for a slash pine ecosystem: SPM2 simulations compared to eddy flux measurements, Forest Sciences, 2001, 47: 52–59.

    Google Scholar 

  4. B. E. Law, M. Williams, P. M. Anthoni, et al., Measuring and modeling seasonal variation of carbon dioxide and water vapour exchange of a Pinus ponderosa forest subject to soil water deficit, Global Change Biol, 2000, 6(6): 613–630.

    Article  Google Scholar 

  5. Y. Luo, B. Medlyn, D. Hui, et al., Gross primary productivity in Duke forest: modeling synthesis of CO2 experiment and eddy-flux data, Ecological Applications, 2001, 11: 239–252.

    Google Scholar 

  6. D. Hui, Y. Luo, and G. Katul, Partitioning inter-annual variability in net ecosystem exchange between climatic variability and function changes, Tree Physiology, 2003, 23: 433–442.

    Google Scholar 

  7. J. M. Gove and D. Y. Hollinger, Application of a dual unscented Kalman filter for simulataneous state and parameter estimation in problems of surface-atmosphere exchange, Journal of Geophysical Research-Atmospheres, 2006, D08s07, 111.

    Google Scholar 

  8. L. White and Y. Luo, Model-Based assessment for terrestrial carbon processes: Implications for sampling strategies in face experiments, Applied Mathematics and Computation, 2005, 167: 419–434.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. White, Y. Luo, and T. Xu, Carbon sequestration: Inversion of face data and prediction, Applied Mathematics and Computation, 2005, 166: 783–800.

    Article  MathSciNet  Google Scholar 

  10. L. White, F. White, T. Xu, and Y. Luo, Estimation of parameters in carbon sequestration models from net ecosystem exchange data, Applied Mathematics and Computation, 2006, 181: 864–879.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. White and Y. Q. Luo, Modeling and inversion of net ecological exchange data using an ito stochastic differential equation approach, Applied Mathematics and Computation, 2008, 196(2): 686–704.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. D. Annan, D. J. Lunt, J. C. Hargreaves, and P. J. Valdes, Parameter estimation in an atmospheric GCM using the ensemble Kalman filter, Nonlinear Processes in Geophysics, 2005, 12: 363–371.

    Article  Google Scholar 

  13. C. Bishop, B. Etherton, and S. Majumdar, Adaptive sampling with the ensemble transform kalman gilter, Part I: Theoretical Aspect, Monthly Weather Review, 2001, 129: 420–436.

    Article  Google Scholar 

  14. M. Chen, S. Liu, and L. Tieszen, State-parameter estimation of ecosystem models using a smoothed ensemble kalman filter, preprint.

  15. G. Evensen, The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dynamics, 2003, 53: 343–367.

    Article  Google Scholar 

  16. L. White and A. Shapiro, Radar network scanning coordination based on ensemble transform kalman filtering variance optimization, Applied Mathematics and Computation, 2007, 188(5): 1285–1309.

    Article  MATH  MathSciNet  Google Scholar 

  17. Ian Rhodes, A tutorial introduction to estimation and filtering, IEEE Trans. on Automatic Control, 1971, 16(6): 688–706.

    Article  MathSciNet  Google Scholar 

  18. D. Y. Hollinger and A. D. Richardson, Uncertainty in eddy covariance measurements and its application to physiological models, Tree Physiology, 2005, 25: 873–885.

    Google Scholar 

  19. A. D. Richardson, D. Y. Hollinger, G. G. Burba, et al., A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes, Agricultural and Forest Meteorology, 2006, 136: 1–18

    Article  Google Scholar 

  20. T. C. Gard, Introduction to Stochastic Differential Equations, Marcel Dekker, Inc., New York, 1988.

    MATH  Google Scholar 

  21. P. E. Kloeden and E. Platen, Numerical Solutions of Stochastic Differential Equations, Springer, New York, 1999.

    Google Scholar 

  22. W. Rumelin, Numerical treatment of stochastic differential equations, SIAM J. Numerical Anal., 1982, 19: 604–613.

    Article  MathSciNet  Google Scholar 

  23. I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer-Verlag, New York, 1972.

    MATH  Google Scholar 

  24. B. Oksendal, Stochastic Differential Equations, Springer, New York, 2000.

    Google Scholar 

  25. A. Tarantola, Inverse Problem Theory, SIAM, Philadelphia, 2005.

    MATH  Google Scholar 

  26. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.

    MATH  Google Scholar 

  27. M. R. Raupach, P. J. Rayner, D. J. Barrett, et al., Model-data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications, Global Change Biolog, 2005, 1: 378–397.

    Article  Google Scholar 

  28. M. Williams, et al., An analysis of forest carbon dynamics using data assimilation, Global Change Biology, 2005, 11: 89–105.

    Article  Google Scholar 

  29. M. Schultz, Spline Analysis, N. J. Englewood Cliffs, Prentice Hall, 1973.

    MATH  Google Scholar 

  30. Y. L. Luo, L. White, J. Canadell, et al., Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with an inversion approach, Global Biogeochemical Cycles, 2003, 17(1): 21–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luther White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, L. Estimation of time dependent carbon transfer coefficients using net ecosystem exchange data. J Syst Sci Complex 23, 640–664 (2010). https://doi.org/10.1007/s11424-010-0150-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-010-0150-y

Key words

Navigation