Skip to main content
Log in

Asymptotic limits and stabilization for the 1D nonlinear Mindlin-Timoshenko system

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper shows how the so called von Kármán model can be obtained as a singular limit of a modified Mindlin-Timoshenko system when the modulus of elasticity in shear k tends to infinity, provided a regularizing term through a fourth order dispersive operator is added. Introducing damping mechanisms, the authors also show that the energy of solutions for this modified Mindlin-Timoshenko system decays exponentially, uniformly with respect to the parameter k. As k → ∞, the authors obtain the damped von Kármán model with associated energy exponentially decaying to zero as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. F. Doyle, Wave Propagation in Structures, Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  2. J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM, 1989.

  3. J. E. Lagnese and J. L. Lions, Modelling Analysis and Control of Thin Plates, RMA 6, Masson, Paris, 1988.

    MATH  Google Scholar 

  4. I. Chueshov and I. Lasiecka, Global attractors for Mindlin-Timoshenko plates and for their Kirchhoff limits, Milan J. Math., 2006, 74: 117–138.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Favini, M. A. Horn, I. Lasiecka, and D. Tartaru, Global existence, uniqueness and regularity of solutions to a von Kármán system with nonlinear boundary dissipation, Diff. Integ. Eqns, 1996, 9: 267–294.

    MATH  Google Scholar 

  6. J. E. Lagnese and G. Leugering, Uniform stabilization of a nonlinear beam by nonlinear boundary feedback, J. Diff. Eqns, 1991, 91: 355–388.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions, SIAM Rev., 1978, 20: 639–739.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. L. Lions, Exact controllability, stabilizability and perturbations for distributed systems, SIAM Rev., 1988, 30: 1–68.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. D. Araruna and E. Zuazua, Controllability of the Kirchhoff system for beams as a limit of the Mindlin-Timoshenko system, SIAM J. Cont. Optim., 2008, 47(4): 1909–1938.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Pazoto, G. Perla Menzala, and E. Zuazua, Stabilization of Berger-Timoshenko’s equation as limit of the uniform stabilization of the von Kárman system of beams and plates, Math. Model. Numer. Anal., 2002, 36(4): 657–691.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Perla Menzala and E. Zuazua, The beam equation as a limit of 1-D nonlinear von Kármán model, Appl. Math. Lett., 1999, 12: 47–52.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Perla Menzala and E. Zuazua, Timoshenko’s beam equation as limit of a nonlinear one-dimensional von Kármán system, Proceedings of the Royal Society of Edinburgh, 2000, 130A: 855–875.

    Article  Google Scholar 

  13. G. Perla Menzala and E. Zuazua, Timoshenko’s plate equation as a singular limit of the dynamical von Kármán system, J. Math. Pures Appl., 2000, 79(1): 73–94.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, vol. 1, 1972.

    Google Scholar 

  15. J. Simon, Compact sets in the space L p (0, T;B), Ann. Mat. Pura Appl., 1987, CXLVI(4): 65–96.

    Google Scholar 

  16. H. Brezis, Analyse Fonctionnelle: Theórie et Applications, Dunod, Paris, 1999.

    Google Scholar 

  17. G. Perla Menzala and E. Zuazua, Explicity exponential decay rates for solutions of von Kármán system of thermoelastic plates, C. R. Acad. Sci. Paris, 1997, 324: 49–54.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. D. Araruna.

Additional information

This paper is partially supported by INCTMat, FAPESQ-PB, CNPq (Brazil) under Grant Nos. 308150/2008-2 and 620108/2008-8, the MICINN (Spain) under Grant No. MTM2008-03541, the Advanced Grant FP7-246775 NUMERIWAVES of the ERC, and the Project PI2010-04 of the Basque Government, also dedicated to Prof. D. L. Russell on his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araruna, F.D., Braz E Silva, P. & Zuazua, E. Asymptotic limits and stabilization for the 1D nonlinear Mindlin-Timoshenko system. J Syst Sci Complex 23, 414–430 (2010). https://doi.org/10.1007/s11424-010-0137-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-010-0137-8

Key words

Navigation