Skip to main content
Log in

An overview of the development of low gain feedback and low-and-high gain feedback

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Low gain feedback refers to certain families of stabilizing state feedback gains that are parameterized in a scalar and go to zero as the scalar decreases to zero. Low gain feedback was initially proposed to achieve semi-global stabilization of linear systems subject to input saturation. It was then combined with high gain feedback in different ways for solving various control problems. The resulting feedback laws are referred to as low-and-high gain feedback. Since the introduction of low gain feedback in the context of semi-global stabilization of linear systems subject to input saturation, there has been effort to develop alternative methods for low gain design, to characterize key features of low gain feedback, and to explore new applications of the low gain and low-and-high gain feedback. This paper reviews the developments in low gain and low-and-high gain feedback designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. Lin and A. Saberi, Semi-global exponential stabilization of linear systems subject to ‘input saturation’ via linear feedbacks, System & Control letters, 1993, 21(3): 225–239.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. J. Sussmann, E. D. Sontag, and Y. Yang, A general result on the stabilization of linear systems using bounded controls, IEEE Transactions on Automatic Control, 1994, 39(12): 2411–2425.

    Article  MATH  MathSciNet  Google Scholar 

  3. Z. Lin and A. Saberi, Semi-global exponential stabilization of linear discrete-time systems subject to input saturation via linear feedback, Systems & Control Letters, 1995, 24(2): 125–132.

    Article  MATH  MathSciNet  Google Scholar 

  4. Z. Lin, A. A. Stoorvogel, and A. Saberi, Output regulation for linear systems subject to input saturation, Automatica, 1996, 32(1): 29–47.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. R. Teel, Semi-global stabilization of linear controllable systems with input nonlinearities, IEEE Transactions on Automatic Control, 1995, 40(1): 96–100.

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Zhou, G. Duan, and Z. Lin, A parametric Lyapunov equation approach to the design of low gain feedback, IEEE Transactions on Automatic Control, 2008, 53(6): 1548–1554.

    Article  MathSciNet  Google Scholar 

  7. Z. Lin, Semi-global stabilization of linear systems with position and rate limited actuators, Systems & Control Letters, 1997, 30: 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  8. Z. Lin, Semi-global stabilization of discrete-time linear systems with position and rate limited actuators, Systems & Control Letters, 1998, 34(5): 313–322.

    Article  MATH  MathSciNet  Google Scholar 

  9. Z. Lin, Robust semi-global stabilization of linear systems with imperfect actuators, Systems & Control Letters, 1997, 29: 215–221.

    Article  MATH  MathSciNet  Google Scholar 

  10. Z. Lin, H -almost disturbance decoupling with internal stability for linear systems subject to input saturation, IEEE Transactions on Automatic Control, 1997, 42: 992–995.

    Article  MATH  Google Scholar 

  11. Z. Lin, Global control of linear systems with saturating actuators, Automatica, 1998, 34(7): 897–905.

    Article  MATH  MathSciNet  Google Scholar 

  12. Z. Lin and A. Saberi, A semi-global low-and-high gain design technique for linear systems with input saturation - Stabilization and disturbance rejection, International Journal of Robust and Nonlinear Control, 1995, 5: 381–398.

    Article  MATH  MathSciNet  Google Scholar 

  13. Z. Lin and A. Saberi, Low-and-high gain design technique for linear systems subject to input saturation – A direct method, International Journal of Robust and Nonlinear Control, 1997, 7: 1071–1101.

    Article  MATH  MathSciNet  Google Scholar 

  14. Z. Lin, A. Saberi, and A.R. Teel, Simultaneous L p -stabilization and internal stabilization of linear systems subject to input saturation – state feedback case, Systems & Control Letters, 1995, 25: 219–226.

    Article  MATH  MathSciNet  Google Scholar 

  15. Z. Lin, A. Saberi, and A.R. Teel, Almost disturbance decoupling with internal stability for linear systems subject to input saturation – State feedback case, Automatica, 1996, 32: 619–624.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Saberi, Z. Lin, and A. R. Teel, Control of linear systems with saturating actuators, IEEE Transactions on Automatic Control, 1996, 41(3): 368–378.

    Article  MATH  MathSciNet  Google Scholar 

  17. Z. Lin and A. Saberi, Semi-global stabilization of partially linear composite systems via feedback of the state of the linear part, Systems & Control Letters, 1993, 20: 199–207.

    Article  MATH  MathSciNet  Google Scholar 

  18. Z. Lin and A. Saberi, Robust semi-global stabilization of minimum-phase input-output linearizable systems via partial state and output feedback, IEEE Transactions on Automatic Control, 1995, 40: 1029–1041.

    Article  MATH  MathSciNet  Google Scholar 

  19. Z. Lin, Almost disturbance decoupling with global asymptotic stability for nonlinear systems with disturbance affected unstable zero dynamics, Systems & Control Letters, 1998, 33: 163–169.

    Article  MATH  MathSciNet  Google Scholar 

  20. Z. Lin, X. Bao, and B. M. Chen, Further results on almost disturbance decoupling with global asymptotic stability for nonlinear systems, Automatica, 1999, 35(4): 709–717.

    Article  MATH  Google Scholar 

  21. B. M. Chen, Z. Lin, and C. C. Hang, Design for general H1-almost disturbance decoupling problem with measurement feedback and internal stability – An eigenstructure assignment approach, International Journal of Control,1998, 71(4): 653–685.

    Article  MATH  MathSciNet  Google Scholar 

  22. Z. Lin and B. M. Chen, Solutions to general H1 almost disturbance decoupling with measurement feedback and internal stability for discrete-time systems, Automatica, 2000, 36(8): 1103–1122.

    Article  MATH  MathSciNet  Google Scholar 

  23. Z. Lin, A. Saberi, P. Sannuti, and Y. Shamash, Perfect regulation of linear multivariable systems – a low-and-high gain design, Proceedings the Workshop on Advances on Control and Its Applications, Lecture Notes in Control and Information Sciences (edited by H. Khalil, J. Chow, and P. Ioannou), 1996, 208: 172–193.

  24. Z. Lin, A. Saberi, P. Sannuti, and Y. Shamash, Perfect regulation for linear discrete-time systems – A low-gain based design approach, Automatica, 1996, 32: 1085–1091.

    Article  MATH  MathSciNet  Google Scholar 

  25. Z. Lin and H. Fang, On asymptotic stabilizability of linear systems with delayed input, IEEE Transactions on Automatic Control, 2007, 52(6): 998–1013.

    Article  MathSciNet  Google Scholar 

  26. Z. Lin, On asymptotic stabilizability of discrete-time linear systems with delayed input, Communications in Systems and Information, 2008, 7(3): 227–264.

    Google Scholar 

  27. B. Zhou, Z. Lin, and G. Duan, Properties of the parametric Lyapunov equation based low gain design with applications in stabilization of time-delay systems, IEEE Transactions on Automatic Control, 2009, 54(7): 1698–1704.

    Article  MathSciNet  Google Scholar 

  28. W. Lan and J. Huang, Semi-global stabilization and output regulation of singular linear systems with input saturation, IEEE Transactions on Automatic Control, 2003, 48(7): 1274–1280.

    Article  MathSciNet  Google Scholar 

  29. B. Zhou, J. Lam, and G. Duan, An ARE approach to semi-global stabilization of discrete-time descriptor linear systems with input saturation, Systems & Control Letters, to appear.

  30. Z. Lin, M. Pachter, and S. Banda, Toward improvement on tracking performance – Nonlinear feedback for linear systems, International Journal of Control, 1998, 70: 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  31. B. M. Chen, T. H. Lee, K. Peng, and V. Venkataramanan, Composite nonlinear feedback control for linear systems with input saturation: theory and an application, IEEE Trans. Automatic Control, 2003, 48(3): 427–439.

    Article  MathSciNet  Google Scholar 

  32. M. C. Turner, I. Postlethwaite, and D. J. Walker, Nonlinear tracking control for multivariable constrained input linear systems, Int. J. Control, 2000, 73(12): 1160–1172.

    Article  MATH  MathSciNet  Google Scholar 

  33. Z. Lin, A. Saberi, M. Gutmann, and Y. Shamash, Linear controller for an inverted pendulum having restricted travel – A high-and-low gain approach, Automatica, 1996, 32(6): 933–937.

    Article  MATH  MathSciNet  Google Scholar 

  34. Z. Lin, Low Gain Feedback, Lecture Notes in Control and Information Sciences, Vol. 240, Springer, London, 1998.

    MATH  Google Scholar 

  35. B. Zhou, Z. Lin, and G. Duan, Norm vanishment and its applications in constrained control – part I: The ℒ case, to be presented at The Combined 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China, December 2009.

  36. B. Zhou, Z. Lin, and G. Duan, Norm vanishment and its applications in constrained control – part I: The ℒ2 case," to be presented at The Combined 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China, December 2009.

  37. W. M.Wonham, Linear Multivariable Control: A Geometric Approach, Springer-Verlag, New York, 1979.

    MATH  Google Scholar 

  38. Z. Lin, B. M. Chen, and X. Liu, Linear Systems Toolkit, 2004. URL: http://linearsystemskit.net.

  39. R. Sepulchre, Slow peaking and low-gain designs for global stabilization of nonlinear systems, IEEE Transactions on Automatic Control, 2000, 45(3): 453–461.

    Article  MATH  MathSciNet  Google Scholar 

  40. J. C. Willems, Least squares stationary optimal control and the algebraic Riccati equation, IEEE Transactions on Automatic Control, 1971, 16: 621–634.

    Article  MathSciNet  Google Scholar 

  41. A. R. Teel, Linear systems with input nonlinearities: Global stabilization by scheduling a family of H -type controllers, International Journal of Robust and Nonlinear Control, 1995, 5: 399–441.

    Article  MATH  MathSciNet  Google Scholar 

  42. T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems, Springer, 1995.

    Google Scholar 

  43. K. Peng, B. M. Chen, T. H. Lee, and V. Venkataramanan, Design and implementation of a dual-stage actuated HDD servo system via composite nonlinear control approach, Mechatronics, 2004, 14: 965–988.

    Article  Google Scholar 

  44. W. Peng, Z. Lin, and J. Su, Computed torque control based composite nonlinear feedback controller for robot manipulators with bounded torques, IET Control Theory & Applications, 2009, 3(6): 701–711.

    Article  MathSciNet  Google Scholar 

  45. J. H. Blakelock, Automatic Control of Aircraft and Missiles, John Wiley & Sons, Inc., New York, 1990.

    Google Scholar 

  46. Z. Lin and A. Saberi, Semi-global stabilization of minimum phase nonlinear systems in special normal form via linear high-and-low-gain state feedback, International Journal of Robust and Non-linear Control, 1994, 4: 353–362.

    Article  MATH  MathSciNet  Google Scholar 

  47. C. I. Byrnes and A. Isidori, Asymptotic stabilization of minimum phase nonlinear systems, IEEE Transactions on Automatic Control, 1991, 36: 1122–1137.

    Article  MATH  MathSciNet  Google Scholar 

  48. H. J. Sussmann and P. V. Kokotovic, The peaking phenomenon and the global stabilization of nonlinear systems, IEEE Transactions on Automatic Control, 1991, 36: 424–440.

    Article  MATH  MathSciNet  Google Scholar 

  49. A. R. Teel, Semi-global stabilization of minimum phase nonlinear systems in special normal forms, Systems & Control Letters, 1992, 19(3): 187–192.

    Article  MATH  MathSciNet  Google Scholar 

  50. H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, John Wiley & Sons, Inc., New York, 1972.

    MATH  Google Scholar 

  51. Q. F. Wei, W. P. Dayawansa, and W. S. Levine, Nonlinear controller for an inverted pendulum having restricted travel, Automatica, 1995, 31(6): 841–850.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongli Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Z. An overview of the development of low gain feedback and low-and-high gain feedback. J Syst Sci Complex 22, 697–721 (2009). https://doi.org/10.1007/s11424-009-9196-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-009-9196-0

Key words

Navigation