Skip to main content

Advertisement

Log in

Energy flows in complex ecological systems: a review

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Energy flow drives the complex systems to evolve. The allometric scaling as the universal energy flow pattern has been found in different scales of ecological systems. It reflects the general power law relationship between flow and store. The underlying mechanisms of energy flow patterns are explained as the branching transportation networks which can be regarded as the result of systematic optimization of a biological target under constraints. Energy flows in the ecological system may be modelled by the food web model and population dynamics on the network. This paper reviews the latest progress on the energy flow patterns, explanatory models for the allometric scaling and modelling approach of flow and network evolution dynamics in ecology. Furthermore, the possibility of generalizing these flow patterns, modelling approaches to other complex systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. T. Odum, System Ecology: An Introduction, John Wiley Sons Inc, San Francisco, 1983.

    Google Scholar 

  2. S. L. Pimm, Food Webs, University of Chicago Press, Chicago, 2002.

    Google Scholar 

  3. J. H. Brown, Toward a metabolic theory of ecology, Ecology, 2004, 85(7): 1771–1789.

    Article  Google Scholar 

  4. G. B. West, J. H. Brown, and B. J. Enquist, A general model for the origin of allometric scaling laws in biology, Science, 1997, 276: 122–126.

    Article  Google Scholar 

  5. J. R. Banavar, A. Maritan, and A. Rinaldo, Size and form in efficient transportation networks, Nature, 1999, 399: 130–132.

    Article  Google Scholar 

  6. N. Loeuille and M. Loreau, Evolutionary emergence of size-structured food webs, in Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 5761–5766.

  7. M. E. Moses and J. B. Brown, Allometry of human fertility and energy use, Ecology Letters, 2006, 6: 295–300.

    Article  Google Scholar 

  8. W. Q. Duan, Universal scaling behavior in weighted trade networks, the European Physical Journal B, 2007, 59: 271–276.

    Article  Google Scholar 

  9. C. Kuhnerta, D. Helbinga, and G. B. West, Scaling laws in urban supply networks, Physica A, 2006, 363: 96–103.

    Article  Google Scholar 

  10. T. Gross and B. Blasius, Adaptive coevolutionary networks: A review, Journal of the royal society, 2008, 5: 259–271.

    Google Scholar 

  11. S. E. Jorgensen and H. F. Mejer, A holistic approach to ecological modelling, Ecological Modelling, 1979, 7: 169–189.

    Article  MathSciNet  Google Scholar 

  12. M. Kleiber, Body size and metabolism, Hilgardia, 1932, 6: 315–353.

    Google Scholar 

  13. G. B. West and J. H. Brown, The origin of allometric scaling laws in biology from genomes to ecosystems: Towards a quantitative unifying theory of biological structure and organization, Journal of Experimental Biology, 2005, 208(9): 1575–1592.

    Article  Google Scholar 

  14. J. H. Brown, G. B. West, and B. J. Enquist, Scaling in biology: Patterns and processes, causes, and consequences, in Scaling in Biology (ed. by J. H. Bown and G. B. West), Oxford University Press, New York, 2000, 1–24.

    Google Scholar 

  15. J. H. Brown and G. B. West, Scaling in Biology, Oxford University Press, New York, 2000.

    MATH  Google Scholar 

  16. P. S. Dodds, D. H. Rothman, and J. S. Weitz, Re-examination of the “3/4-law” of metabolism, Journal of Theoretical Biology, 2001, 209: 9–27.

    Article  Google Scholar 

  17. C. R. White and R. S. Seymour, Mammalian basal metabolic rate is proportional to body mass2/3, in Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(7): 4046–4049.

  18. S. L. Linstedt and W. A. Calder, Body size, physiological time, and longevity of homeothermic animals, the Quarterly Review of Biology, 1981, 56: 1–16.

    Article  Google Scholar 

  19. J. F. Gillooly, E. L. Charnov, G. B. West, V. M. Savage, and J. H. Brown, Effects of size and temperature on developmental time, Nature, 2002, 417: 70–73.

    Article  Google Scholar 

  20. E. L. Charnov, Evolution of mammal life histories, Evolutionary Ecology Research, 2001, 3: 521–535.

    Google Scholar 

  21. K. S. Nielson, Scaling: Why is Animal Size So Important?, Cambridge University Press, Cambridge, 1984.

    Google Scholar 

  22. B. J. Enquist, G. B. West, and J. H. Brown, Quarter-power allometric scaling in vascular plants: Functional basis and ecological consequences, in Scaling in Biology, Oxford University Press, New York, 2000, 167–198.

    Google Scholar 

  23. W. Jetz, C. Carbone, J. Fulford, and J. H. Brown, The scaling of animal space use, Science, 2004, 306: 266–268.

    Article  Google Scholar 

  24. J. Damuth, Population density and body size in mammals, Nature, 1981, 290: 699–700.

    Article  Google Scholar 

  25. S. Nee, A. F. Read, and P. H. Harvey, The relationship between abundance and body size in british birds, Nature, 1991, 351: 312–313.

    Article  Google Scholar 

  26. A. P. Allen, J. H. Brown, and J. F. Gillooly, Global biodiversity, biochemical kinetics, and the energetic-equivalence rule, Science, 2002, 297: 1545–1548.

    Article  Google Scholar 

  27. B. J. Enquist, J. H. Brown, and G. B. West, Allometric scaling of plant energetics and population density, Nature, 1998, 395: 163–165.

    Article  Google Scholar 

  28. M. Rubner, Ueber den einfluss der körpergrösse auf stoff-und kraftwechsel, Zeitschrift fur Biologie, 1883, 19: 535–562.

    Google Scholar 

  29. G. B. West, J. H. Brown, and B. J. Enquist, The fourth dimension of life: Fractal geometry and allometric scaling of organisms, Science, 1999, 284: 1677–1679.

    Article  MathSciNet  Google Scholar 

  30. J. R. Banavar, J. Damuth, A. Maritan, and A. Rinaldo, Supply-demand balance and metabolic scaling, in Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16): 10506–10509.

  31. P. S. Agutter and D. N. Wheatley, Metabolic scaling: Consensus or controversy? Theoretical Biology and Medical Modelling, 2004, 1(13): 1–13.

    Google Scholar 

  32. A. Bejan, Shape and Structure, from Engineering to Nature, Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  33. A. M. Makarieva and V. G. Gorshkov, Distributive network model of banavar, damuth, maritan and rinaldo (2002): Critique and perspective, Journal of Theoretical Biology, 2006, 239(3): 394–397.

    Article  MathSciNet  Google Scholar 

  34. A. M. M., V. G. Gorshkov, and B. L. Li, Revising the distributive networks models of west,brown and enquist (1997) and banavar, maritan and rinaldo (1999): Metabolic inequity of living tissues provides clues for the observed allometric scaling rules, Journal of Theoretical Biology, 2005, 237: 291–301.

    Article  MathSciNet  Google Scholar 

  35. J. H. Brown and J. F. Gillooly, Ecological food webs: High-quality data facilitate theoretical unification, in Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(4): 1467–1468.

  36. J. E. Cohen, T. Jonsson, and S. R. Carpenter, Ecological community description using the food web, species abundance, and body size, in Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(4): 1781–1786.

  37. J. E. Cohen, F. Briand, and C. M. Newman, Community Food Webs: Data and Theory (biomathematics vol. 20), Springer-Verlag, Berlin, 1990.

    MATH  Google Scholar 

  38. R. J. Williams and N. D. Martinez, Simple rules yield complex foodwebs, Nature, 2000, 404: 180–183.

    Article  Google Scholar 

  39. M. F. Cattin, L. F. Bersier, C. B. Richter, R. Baltensperger, and J. P. Gabriel, Phylogenetic constraints and adaptation explain food-web structure, Nature, 2004, 427: 835–839.

    Article  Google Scholar 

  40. M. C. Emmerson and D. Raffaelli, Predator-prey body size, interaction strength and the stability of a real food web, Journal of Animal Ecology, 2004, 73: 399–409.

    Article  Google Scholar 

  41. S. Jennings and S. Mackinson, Abundance–body mass relationships in size-structured food webs, Ecology Letters, 2003, 6: 971–974.

    Article  Google Scholar 

  42. N. Loeuille and M. Loreau, Evolution of body size in food webs: Does the energetic equivalence rule hold? Ecology Letters, 2006, 9: 171–178.

    Article  Google Scholar 

  43. D. Garlaschelli, G. Caldarelli, and L. Pietronero, Universal scaling relations in food webs, Nature, 2003, 423: 165–168.

    Article  Google Scholar 

  44. S. Allesina and A. Bodini, Food web networks: Scaling relation revisited, Ecological Complexity, 2005, 2: 323–338.

    Article  Google Scholar 

  45. F. J. Frank and D. J. Murrell, A simple explanation for universal scaling relations in food webs, Ecology, 2005, 86(12): 3258–3263.

    Article  Google Scholar 

  46. J. F. Gillooly, A. P. Allen, and J. H. Brown, Food-web structure and dynamics: Reconciling alternative ecological currencies, in Ecological Networks: Linking Structure to Dynamics in Food Webs, Oxford University Press, 2005.

  47. A. J. Lotka, Elements of physical biology, the American Mathematical Monthly, 1926, 33(8): 426–428.

    Article  MathSciNet  Google Scholar 

  48. G. Caldarelli, P. G. Higgs, and A. J. McKane, Modelling coevolution in multispecies communities, Journal of Theoretical Biology, 1998, 193: 345–358.

    Article  Google Scholar 

  49. M. Bussenschutt and C. P. Wostl, A discrete, allometric approach to the modeling of ecosystem dynamics, Ecological Modelling, 2000, 126: 33–48.

    Article  Google Scholar 

  50. A. J. McKane, Evolving complex food webs, the European Physical Journal B, 2004, 38: 287–295.

    Article  Google Scholar 

  51. B. Drossel, P. G. Higgs, and A. J. McKane, The influence of predator-prey population dynamics on the long-term evolution of food web structure, Journal of Theoretical Biology, 2001, 208: 91–107.

    Article  Google Scholar 

  52. C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada, 1965, 45: 3–60.

    Google Scholar 

  53. D. L. DeAngelis, Dynamics of Nutrient Cycling and Food Webs, Springer, Berlin, 1991.

    Google Scholar 

  54. L. R. Ginzburg and H. R. Akcakaya, Consequences of ratio-dependent predation for steady-state properties of ecosystems, Ecology, 1992, 73: 1536–1543.

    Article  Google Scholar 

  55. J. Zhang, Energy flows and maximum power on an evolutionary ecological network model, in Advances in Artificial Life: 9th European Conference, ECAL 2007, Springer, 2007, 113–122.

  56. S. Jain and S. Krishna, Large extinctions in an evolutionary model: The role of innovation and keystone species, PNAS, 2002, 99: 2055–2060.

    Article  MathSciNet  Google Scholar 

  57. A. J. McKane and B. Drossel, Models of food web evolution, in Ecological Networks: Linking Structure to Dynamics in Food Webs, Oxford University Press, New York, 2005.

    Google Scholar 

  58. M. Doebeli and U. Dieckmann, Evolutionary branching and sympatric speciation caused by different types of ecological interactions, the American Naturalist, 2000, 156: 77–101.

    Article  Google Scholar 

  59. U. Dieckmann and M. Doebeli, On the origin of species by sympatric speciation, Nature, 1999, 400(22): 354–357.

    Article  Google Scholar 

  60. C. I. Hiroshi and T. Ikegami, Food-web formation with recursive evolutionary branching, Journal of Theoretical Biology, 2006, 238: 1–10.

    Article  MathSciNet  Google Scholar 

  61. H. T. Odum and R. C. Pinkerton, Time’s speed regulator: The optimum efficiency for maximum power output in physical and biological systems, American Scientist, 1955, 43: 331–343.

    Google Scholar 

  62. J. D. Farmer, S. A. Kauffman, and N. H. Packard, Autocatalytic replication of polymers, Physica D, 1986, 22: 50–67.

    Article  MathSciNet  Google Scholar 

  63. R. J. Bagley, D. J. Farmer, and W. Fontana, Evolution of a metabolism, in Artificial Life II (ed. by C. G. Angton, C. Taylor, J. D. Farmer, and Rasmussen), Addison-Wesley, Los-Alamos, 1991.

    Google Scholar 

  64. S. Jain and S. Krishna, A model for the emergence of cooperation, interdependence, and structure in evolving networks, PNAS, 2001, 98: 543–547.

    Article  Google Scholar 

  65. A. J. Lotka, Contribution to the energetics of evolution, in Proceedings of the National Academy of Sciences of the United States of America, 1922, 8(6): 147–151.

  66. A. S. Charles, Maximum Power: The Ideas and Applications of H. T. Odum, CO: University Press of Colorado, Niwot, 1995.

    Google Scholar 

  67. E. H. Decker, S. Elliott, F. A. Smith, D. R. Blake, and F. S. Rowland, Energy and material flow through the urban ecosystem, Annual Review of Energy and the Environment, 2000, 25: 685–740.

    Article  Google Scholar 

  68. T. E. Graedel and B. R. Allenby, Industrial Ecology, Prentice Hall, Upper Saddle River, 2002.

    Google Scholar 

  69. R. U. Ayers and A. V. Kneese, Production, consumption, and externalities, the American Economic Review, 1969, 59(3): 282–297.

    Google Scholar 

  70. P. H. Brunner and H. Rechberger, Practical Handbook of Material Flow Analysis, CRC, 2003.

  71. R. Axtell, Zipf distribution of U.S. firm sizes, Science, 2001, 293: 1818–1820.

    Article  Google Scholar 

  72. T. S. Ray, An approach to the synthesis of life, in Artificial Life II: Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems (Santa Fe Institute Studies in the Sciences of Complexity, Vol. 10) (ed. by C. G. Langton et al.), Addison-Wesley, 1992, 371–408.

  73. B. A. Huberman and T. Hogg, The emergence of computational ecologies, in 1992 Lectures in Complex Systems, Addison-Wesley, 1993, 185–205.

  74. C. Ofria and C. O. Wilke, Avida: A software platform for research in computational evolutionary biology, Artificial Life, 2004, 10: 191–229.

    Article  Google Scholar 

  75. G. Nicolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order Through Fluctuations, John Wiley Sons, San Francisco, 1977.

    Google Scholar 

  76. P. Bak, How Nature Works: The Science of Self-Organized Criticality, Springer, New York, 1999.

    Google Scholar 

  77. L. M. Martyusheva and V. D. Seleznevb, Maximum entropy production principle in physics, chemistry and biology, Physics Reports, 2006, 426: 1–45.

    Article  MathSciNet  Google Scholar 

  78. R. Dewar, Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states, Journal of Physics A: Mathematical and General, 2003, 36: 631–641.

    Article  MATH  MathSciNet  Google Scholar 

  79. R. C. Dewar, Maximum entropy production and the fluctuation theorem, Journal of Physics A: Mathematical and General, 2005, 38: L371–L381.

    Article  MATH  MathSciNet  Google Scholar 

  80. L. H. Chai, A theoretical analysis of bubble interaction in boiling systems, International Journal of Thermal Sciences, 2004, 43: 1067–1073.

    Article  MathSciNet  Google Scholar 

  81. J. Whitfield, Survival of the Likeliest, PLoS Biology, 2007, 5: e142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Zhang.

Additional information

This research is supported by Guozhi Xu Post Doctoral Research Foundation and the National Natural Science Foundation of China under Grant No. 60574068.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J. Energy flows in complex ecological systems: a review. J Syst Sci Complex 22, 345–359 (2009). https://doi.org/10.1007/s11424-009-9169-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-009-9169-3

Key words

Navigation