Skip to main content
Log in

Optimal hierarchy structures for multi-attribute-criteria decisions

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

A problem of a hierarchy structure optimization is considered. Hierarchical structures are widely used in the Analytic Hierarchy Process, conjoint analysis, and various other methods of multiple criteria decision making. The problem consists in finding a structure that needs a minimum number of pair comparisons for a given total number of the alternatives. For an optimal hierarchy, the minimum efforts are needed for eliciting data and synthesizing the local preferences across the hierarchy to get the global priorities or utilities. Special estimation techniques are developed and numerical simulations performed. Analytical and numerical results suggest optimal ways of priority evaluations for practical managerial decisions in a complex environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. S. Hillier and G. J. Lieberman, Introduction to Operations Research, Holden-Day, San Francisco, 1974.

    Google Scholar 

  2. M. Zeleny, Multiple Criteria Decision Making, McGraw Hill, New York, 1982.

    MATH  Google Scholar 

  3. R. E. Steuer, Multiple Criteria Optimization Theory, Computation, and Application, Wiley, New York, 1986.

    MATH  Google Scholar 

  4. A. S. Bryk and S. W. Raudenbush, Hierarchical Linear Models, Sage, London, 1992.

    Google Scholar 

  5. G. H. Tzeng, H. F. Wang, U. P. Wen, and P. L. Yu, Multiple Criteria Decision Making, Springer-Verlag, Amsterdam, 1994.

    MATH  Google Scholar 

  6. Y. Bar-Yam, Dynamics of Complex Systems, Addison-Wesley, Reading, MA, 1997.

    MATH  Google Scholar 

  7. T. L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New York, 1980.

    MATH  Google Scholar 

  8. T. L. Saaty, Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process, RWS Publications, Pittsburgh, PA, 1994.

    Google Scholar 

  9. T. L. Saaty, Decision Making with Dependence and Feedback: the Analytic Network Process, RWS Publications, Pittsburgh, PA, 1996.

    Google Scholar 

  10. B. L. Golden, E. A. Wasil, and P. T. Harker, The Analytic Hierarchy Process: Applications and Studies, Springer, Berlin-Heidelberg, 1989.

    Google Scholar 

  11. R. F. Dyer and E. H. Forman, An Analytic Approach to Marketing Decisions, Prentice-Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

  12. S. Lipovetsky, The synthetic hierarchy method: An optimizing approach to obtaining priorities in the AHP, European Journal of Operational Research, 1996, 93: 550–564.

    Article  MATH  Google Scholar 

  13. S. Lipovetsky and A. Tishler, Interval estimation of priorities in the AHP, European Journal of Operational Research, 1999, 114: 153–164.

    Article  MATH  Google Scholar 

  14. S. Lipovetsky and M. Conklin, Robust estimation of priorities in the AHP, European Journal of Operational Research, 2002, 137: 110–122.

    Article  MATH  Google Scholar 

  15. S. Lipovetsky, Analytic hierarchy processing in Chapman-Kolmogorov equations, International Journal of Operations and Quantitative Management, 2005, 11: 219–228.

    Google Scholar 

  16. S. Lipovetsky, Global priority estimation in multiperson decision making, Journal of Optimization Theory and Applications, 2009, 140: 77–91.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Keeney and H. Raiffa, Decisions with Multiple Objectives: Preferences and Value Tradeoffs, Wiley, New York, 1976.

    Google Scholar 

  18. F. A. Lootsma, Multi-Criteria Decision Analysis via Ratio and Difference Judgement, Kluwer Academic Publishers, Dordrecht, 1999.

    Book  MATH  Google Scholar 

  19. V. Srinivasan, A conjunctive-compensatory approach to the self-explication of multiattributed preferences, Decision Sciences, 1988, 19: 295–305.

    Article  Google Scholar 

  20. J. W. Moy, K. F. Lam, and E. U. Choo, Deriving the partial values in MCDM by goal programming, Annals of Operations Research, 1997, 74: 277–288.

    Article  MATH  Google Scholar 

  21. S. B. Maurer, The king chicken theorems, Mathematics Magazine, 1980, 53: 67–80.

    Article  MathSciNet  Google Scholar 

  22. L. R. Foulds and F. Y. Partovi, Integrating the analytic hierarchy process and graph theory to model facilities layout, Annals of Operations Research, 1998, 82: 435–451.

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Stauffer and J. S. Sa Martins, Asymmetry in hierarchy model of Bonabeau et al., Advances in Complex Systems, 2003, 6: 559–564.

    Article  MATH  Google Scholar 

  24. K. Hausken and R. Cressman, Formalization of multi-level games, International Game Theory Review, 2004, 6: 195–221.

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Hurvicz and S. Reiter, Designing Economics Mechanisms, Cambridge University Press, Cambridge, UK, 2006.

    Google Scholar 

  26. T. W. Leigh, D. B. Mackay, and J. O. Summers, Reliability and validity of conjoint analysis and self-explicated weights: A comparison, Journal of Marketing Research, 1984, 21: 456–462.

    Article  Google Scholar 

  27. D. C. Miller, Handbook of Research Design and Social Measurement, SAGE Publication, Newbury-Park, CA, London, New Delhi, 1991.

    Google Scholar 

  28. M. Wedel and W. A. Kamakura, Market Segmentation: Concepts and Methodological Foundations, Kluwer Academic Publishers, Boston, 1998.

    Google Scholar 

  29. R. L. Andrews, A. Ansari, and I. Currim, Hierarchical Bayes versus finite mixture conjoint analysis models: A comparison of fit, prediction and partworth recovery, Journal of Marketing Research, 2002, 39: 87–98.

    Article  Google Scholar 

  30. J. J. Louviere, D. A. Hensher, and J. D. Swait, Stated Choice Methods: Analysis and Applications, Cambridge University Press, Cambridge, UK, 2000.

    MATH  Google Scholar 

  31. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Washington, DC, 1970.

    Google Scholar 

  32. S. Lipovetsky and F. A. Lootsma, Generalized golden sections, repeated bisections and aesthetic pleasure, European Journal of Operational Research, 2000, 121: 213–216.

    Article  MATH  Google Scholar 

  33. T. L. Saaty, Optimization in Integers and Related Extremal Problems, McGraw-Hill, New York, 1970.

    MATH  Google Scholar 

  34. H. S. Wilf, Some examples of combinatorial averaging, The American Mathematical Monthly, 1985, 92: 250–261.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan Lipovetsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipovetsky, S. Optimal hierarchy structures for multi-attribute-criteria decisions. J Syst Sci Complex 22, 228–242 (2009). https://doi.org/10.1007/s11424-009-9159-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-009-9159-5

Key words

Navigation